Hydrosilylation of Styrene on Water-saturated Si(001)– 2×1 at Room Temperature

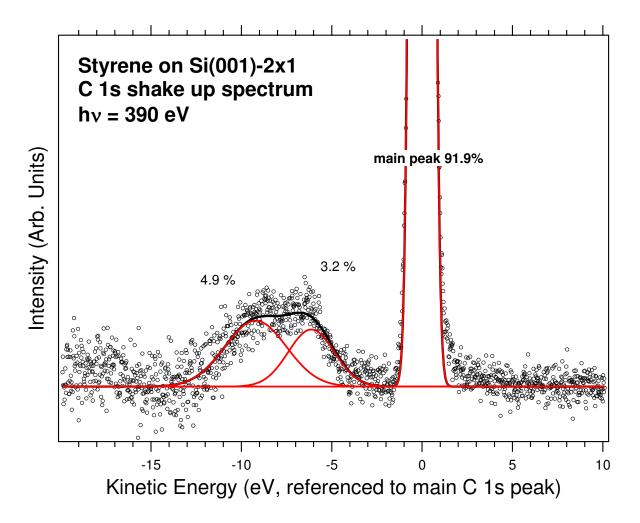
F. Bournel⁺, J.-J. Gallet⁺, D. Pierucci⁺, A. Khaliq⁺, F. Rochet⁺, A. Pietzsch^{*}

⁺ Laboratoire de Chimie Physique Matière et Rayonnement, UMR CNRS 7614, Université Pierre et

Marie Curie, Paris 6, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05

^{*} MAX-Lab synchrotron, Lund university, P.O. box 118, 22100 Lund, Sweden

fabrice.bournel@upmc.fr

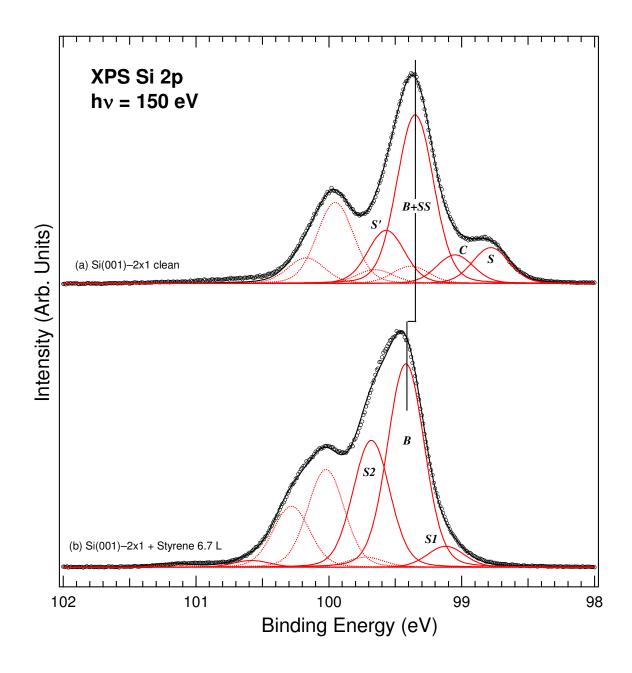

Contents: C 1s shake up spectrum and Si 2p spectrum of the clean $Si(001)-2\times1$ surface exposed to 6.7 L of styrene at room temperature.

S1. Direct adsorption of styrene on clean Si(001)-2×1 at room temperature

The clean surface preparation is described in the experimental section of the paper. After cleaning, the surface was exposed to a styrene dose of 6.7 L (900 s under a pressure of 0.75×10^{-8} Torr) at room temperature.

S.2 Wide C 1s spectrum of the styrene terminated Si(001)-2×1 surface

The wide C 1s spectrum (hv = 390 eV) of the styrene-terminated Si(001)–2×1 surface is presented in figure S1 after background subtraction. One observes shake up structures at lower kinetic energy than the main C 1s peak. The shake ups are fitted using two broad Gaussians at –6.1 eV (*FWHM* = 3 eV) and –9.2 eV (*FWHM* = 4 eV), representing 8% of the whole spectral intensity. Note that in gas phase benzene well resolved $\pi \rightarrow \pi^*$ shake ups transition energies are observed at –5.9 eV ($^1(2b_1 \rightarrow 3b_1)$), \Box 7.0 eV ($^1(1a_2 \rightarrow 2a_2)$, –8.3 eV ($^1(1b_1 \rightarrow 3b_1)$ and –10.7 eV ($^1(1b_1 \rightarrow 4b_1)$), amounting to 10% of the whole spectrum.¹ The $\pi \rightarrow \pi^*$ transition energies in benzene match with the observed (broad) structures of styrene on Si(001), suggesting that the aromatic ring is intact after adsorption.


Figure S1. Wide XPS C 1s spectrum (dots) of the clean Si(001)–2×1 exposed to 6.7 L of styrene after subtraction of the background. The photon energy is 390 eV. The $\pi \rightarrow \pi^*$ shake ups are fitted (black solid line) with two Gaussian components (red solid line), at -6.1 eV (*FWHM* = 3 eV and -9.2 eV (*FWHM* = 4 eV). The takeoff angle of the electrons, with respect to the surface normal, is 45°.

S.3 Si 2p spectra of the clean and styrene-terminated Si(001)–2×1 surface

We present the Si 2p spectra (hv = 150 eV) of the clean Si(001)–2×1 surface in figure S2. The surface directly exposed to 6.7 L of styrene is given in figure S2 (b). The attribution (and notation) of the various component is based on the work of Landmark and coworkers.² The fitting parameters are

collected in table S1. The spectrum of the clean surface (figure S2 (b)) is fitted with: a main peak labeled B+SS at 99.35 eV, encompassing both the bulk component B and the positively charged *down* silicon dimer atom *SS* (SCLS of +0.06 eV); a peak labeled *S* at 98.78 eV (SCLS of -0.57 eV) related to the negatively charged *up* silicon dimer atom; a structure labeled *C* at 99.05 (SCLS of -0.3 eV from B+SS) ascribed to subsurface silicons (3rd layer); and finally the *S'* peak at 99.57 (SCLS of +0.22 eV) attributed to the silicon second plane.

After an exposure to 6.7 L of styrene (figure S2 (a)), the *S* component has completely vanished, indicating that the molecules reacts with the surface dimers. We see a component *S1* (SCLS of -0.3 eV, 3.95% of the spectral weight), that can be a remainder of the clean surface structure *C*. The formation of the SiC bond is manifested by the growth of structure *S2*, with an SCLS of +0.26 eV and a weight of 23.95% (*S2* may include the *S*['] component of the clean surface). A small unidentified component at a SCLS of +1.2 eV is also seen and can be attributed to contamination (suboxides) or losses.

Figure S2. XPS Si 2p spectra (hv = 150 eV) of the n^+ -doped Si(001)–2×1 surface (a) clean and (b) after exposure to 6.7 L of styrene at room temperature. The takeoff angle of the electrons, with respect to the surface normal, is 45°. The experimental curves (circles) are fitted with sums of Voigt components (dark solid lines). The Si $2p_{3/2}$ (Si $2p_{1/2}$) fitting components are the red solid (red dotted) lines. The Si $2p_{3/2}$ binding energy, the widths and the spectral weights of the various components are given in table S1. Note the small rigid binding energy shift of +0.07 eV, due to a band bending variation.

Surface	Component	Si 2p _{3/2} Binding energy	SCLS (eV)	GW (eV)	FWHM (eV)	Weight (%)	Attribution
		(eV)					
Clean	S'	99.57	+ 0.22	0.30	0.32	12.54	2 nd plane
	B(+SS)	99.35	0	0.30	0.32	39.85	Bulk+ down atom
	С	99.05	-0.30	0.30	0.32	6.73	Subsurface
	S	98.78	-0.57	0.30	0.32	8.44	Up atom
6.7 L	S3	100.6	+ 1.2	0.30	0.32	1.27	Losses
Styrene on Si(001)	<i>S2</i>	99.68	+0.26	0.30	0.32	23.95	Si \square C and 2 nd plane
	В	99.42	0	0.30	0.32	38.40	Bulk
	S1	99.12	-0.30	0.30	0.32	3.95	Subsurface (C)

Table S1. Binding energies (Si $2p_{3/2}$), surface core level shifts (SCLS) referenced to the bulk component binding energy, Gaussian widths (GW), *FWHM* and spectral weights of the Voigt components used to fit the Si 2p experimental spectra shown in Figure S2. The Lorentzian width (LW) was 0.045 eV for all components.

References

¹ Lunell, S.; Svensson, S.; Malmaqvist, P.A.; Gelius, U.; Basilier, E.; Siegbahn, K. Chem. Phys. Lett. 1978, 54, 420.

² Landemark, E.; Karlsson, C. J.; Chao, Y.-C.; Uhrberg, R. I. G. Phys. Rev. Lett. **1992**, 69, 1588.