Supporting Information

MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides

Kyungsu Na,^{1,2} Changbum Jo,^{1,2} Jaeheon Kim,¹ Wha-Seung Ahn,³ and Ryong Ryoo^{1,2}*

¹Center for Functional Nanomaterials, Department of Chemistry, KAIST, Daejeon 305-701, Korea ²Graduate School of Nanoscience and Technology (WCU), KAIST, Daejeon 305-701, Korea ³Department of Chemical Engineering, Inha University, Incheon, 402-751, Korea

*CORRESPONDING AUTHOR: Ryong Ryoo (rryoo@kaist.ac.kr; Fax: (+82) 42-350-8130; Tel: (+82) 42-350-2830)

Figure S1. Low-angle powder XRD patterns (A) of as-synthesized TS-1 products, and Ar adsorption isotherms (B) and corresponding micropore size distribution derived by non-local density-functional theory (B, inset) of calcined TS-1 products.

Figure S2. DR-UV spectra of (A) bulk TS-1, (B) nanosheet TS-1 and (C) Ti-MCM-41 before (down) and after (up) fluoride treatment.

Figure S3. Powder XRD patterns of (A) bulk TS-1, (B) nanosheet TS-1 and (C) Ti-MCM-41 before (down) and after (up) fluoride treatment.

Figure S4. N_2 adsorption isotherms and pore size distributions (inset) of (A) bulk TS-1, (B) nanosheet TS-1 and (C) Ti-MCM-41 before and after fluoride treatment. The closed circles correspond to the titanosilicates before fluoride treatment, while the open circles denote those after fluoride treatment.

Figure S5. IR spectra of (A) bulk TS-1, (B) nanosheet TS-1 and (C) Ti-MCM-41 before (down) and after (up) fluoride treatment.

Catalyst	Oxidant	Olefin epoxidation											
		1-Hexene				Cyclohexene			Cyclooctene				
		\mathbf{C}^{a}	S^b	\mathbf{E}^{c}	OC^d	С	S	E	OC	С	S	E	OC
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Bulk TS-1	H_2O_2	19.7	99	97	20.3	1.2	99	86	1.4	0.6	99	84	0.7
	TBHP	2.2	99	98	2.2	1.1	99	97	1.1	0.5	99	96	0.5
Ti-MCM-41	H_2O_2	1.5	71	72	2.1	9.8	14	74	13.2	6.6	74	71	9.3
	TBHP	2.8	85	88	3.2	15.5	35	86	18.0	11.4	81	87	13.1
Nanosheet	H_2O_2	13.9	95	89	15.6	10.5	43	84	12.5	9.4	91	83	11.3
TS-1	TBHP	4.5	99	94	4.8	28.7	74	95	30.2	17.5	94	93	18.8
Nanosheet	H_2O_2	12.8	95	81	15.8	25.0	69	87	28.7	15.3	95	86	17.8
F-TS-1	TBHP	5.3	99	93	5.7	33.7	91	94	35.9	23.6	95	92	25.7

Table S1. Catalytic activities of titanosilicate catalysts for olefin epoxidations for 2 h at 60°C.

^{*a*}Conversion of olefin relative to the maximum possible (%); ^{*b*}Epoxide selectivity (%); ^{*c*}Oxidant efficiency = (amount used for olefin oxidation)/(amount used for olefin oxidation + amount decomposed) x 100 (%); ^{*d*}Oxidant conversion (%)

Table S2. Catalytic reaction results of silylated nanosheet TS-1 for epoxidation of 1-hexene using H_2O_2 .

Sample	Conversion (%)	Epoxide selectivity (%)	Oxidant efficiency (%)
Nanosheet TS-1	13.9	95	89
Silylated nanosheet TS-1	8.9	96	93

Table S3. The effect of fluoride treatment on textural properties of titanosilicates.

Sample	Si/Ti (ICP)	BET surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Average mesopore diameter (nm)	
Bulk TS-1	55	393	0.20	-	
Bulk F-TS-1	56	395	0.21	-	
Nanosheet TS-1	57	580	0.61	6.3	
Nanosheet F-TS-1	54	558	0.62	7.5	
Ti-MCM-41	61	861	0.73	3.1	
F-Ti-MCM-41	45	556	0.52	3.9	