
Supplemental Document: "Photocatalytic Conversion of CO₂ to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions"

Wenbo Hou¹, Wei Hsuan Hung³, Prathamesh Pavaskar², Alain Goeppert¹, Mehmet Aykol², and Stephen B. Cronin^{1,2}

Departments of ¹Chemistry, ²Electrical Engineering, and ³Materials Science University of Southern California, Los Angeles, CA 90089

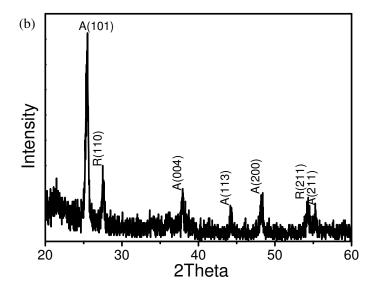
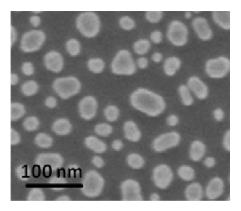
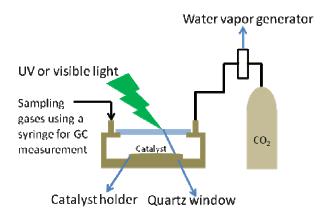
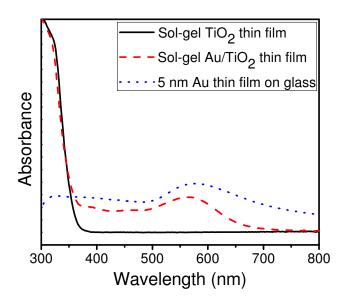
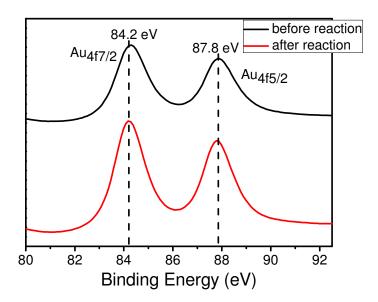



Figure S1. (a) Raman spectrum and (b) XRD profile of sol-gel TiO₂.

The Raman spectrum and XRD profile shown in Figure S1 indicate the anatase crystalline phase of the sol-gel prepared TiO_2 material. Weak reflections in the XRD data corresponding to the (110) and (211) planes of the rutile crystalline phase indicate that a small amount of rutile TiO_2 is present in the sample.

Figure S2. SEM image of 5 nm Au thin film after the second annealing.

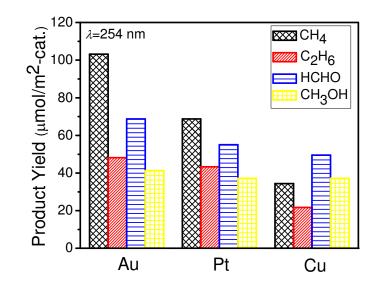

Figure S3. Schematic diagram of experimental setup.

Figure S4. UV-vis absorption spectra of TiO₂ with and without gold nanoparticles and gold nanoparticles deposited on glass by electron-beam evaporation.

Figure S5. X-ray photoelectron spectra (XPS) of Au/TiO₂ sample before and after reactions.

Figure S6. Photocatalytic product yields of 5 nm Pt on glass and a Cu foil compared with that of 5 nm Au on glass.

The photocatalytic reactions are considered to occur by the following schemes.¹

catalyst +
$$hv \rightarrow$$
 catalyst* (e^-, h^+)

for oxidation

$$2H_2O + 4 h^+ \rightarrow O_2 + 4H^+$$

for reduction

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$

$$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O$$

$$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$$

References

1. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic Reduction of Carbon-Dioxide in Aqueous Suspensions of Semiconductor Powders. *Nature* **1979**, 277, (5698), 637-638.