Supporting Information

Atomistic simulations

Force-field parameters

The OPLS-AA? force-field has been used to perform the atomistic simulations of AN and PN dimers. 1 shows the chemical structure of both dimers, which have been terminated by methyl groups. The figure also shows the numbers n associated to the OPLS-AA types chosen to describe each atom (types are named opls n in OPLS-AA topologies). In a few cases, in order to preserve the neutrality of the whole molecule, partial charges have been modified. The opls_139 type in both dimers has been attributed a charge 0.05, and in the PN dimer the opls_145 type has been given no charge.

 PN dimer

Figure 1 OPLS-AA atom types used in atomistic simulations.

Molecular Dynamics set-up

A cut-off of 1.3 nm was used for the calculation of the non-bonded interactions, without switch function nor long-range dispersion correction. Simulations were performed with a time step of 2 fs , with neighbour updates every 10 steps. Simulations were carried out in the NpT ensemble using the Nosé-Hoover thermostat ($\tau_{t}=1 \mathrm{ps}$) and Parrinello-Rahman barostat ($\tau_{p}=4 \mathrm{ps}$).

Coarse-grained simulations

Molecular Dynamics set-up

In the CG simulations, a cutoff of 1.2 nm was used in the calculation of non-bonded interactions, with a shift function starting from 0.9 nm for dispersion interactions. A time step of 20 fs was used, and the neighbour list for non-bonded interaction was updated every 200 fs . These conditions correspond to the standard ones used in the parameterization of MARTINI. Simulations in the NpT ensemble were carried out with the Nosé-Hoover thermostat ($\tau_{T}=1 \mathrm{ps}$) and the Parrinello-Rahman barostat ($\tau_{P}=4$ ps).

Thermodynamic integration

The free energy of transferring an CG HMMM molecule from one solvent (water) to the other (octanol) was calculated using the thermodynamic integration formula? :

$$
\begin{equation*}
\Delta G=\int_{0}^{1}\left\langle\frac{\partial H}{\partial \lambda} \partial \lambda\right\rangle_{\lambda} \tag{1}
\end{equation*}
$$

where λ represents the degree of coupling between the HMMM molecule and the solvent, H is the total Hamiltonian of the system, and G the Gibbs free energy.

