Aquino F. W. B. \& Franco D. W. Formation of dextran deposits in sugar cane spirits Supporting Information

Table I. Operating parameters for inductively coupled plasma atomic emission spectrometry analysis (ICP-AES).

Parameter	Value
Operating power (W)	1300
Coolant Ar flow rate (L/min)	0.5
Plasma Ar flow rate (L/min)	15
Nebulizer type	Meinhard
Sample flow rate (mL/min)	1.0
Element	$\lambda(\mathbf{n m})$
Ca	317.9
Mg	279.1
Cu	324.8
Fe	238.2

Aquino F. W. B. \& Franco D. W. Formation of dextran deposits in sugar cane spirits Supporting Information

Table II. Concentrations of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Cu}$, and Fe in the models solutions with pH 4.4 during 90 days at $25^{\circ} \mathrm{C}$.

Days	$\mathrm{Ca}(\mathrm{mg} / \mathrm{L})^{\mathrm{a}}$	$\mathrm{Mg}(\mathrm{mg} / \mathrm{L})^{\mathrm{a}}$	$\mathrm{Cu}(\mathrm{mg} / \mathrm{L})^{\mathrm{a}}$	$\mathrm{Fe}(\mathrm{mg} / \mathrm{L})^{\mathrm{a}}$
0	$2,6 \times 10^{-4}$	$3,6 \times 10^{-4}$	$7,9 \times 10^{-5}$	$4,4 \times 10^{-5}$
30	$2,4 \times 10^{-4}$	$3,3 \times 10^{-4}$	$7,6 \times 10^{-5}$	$4,2 \times 10^{-5}$
60	$2,8 \times 10^{-4}$	$3,8 \times 10^{-4}$	$8,4 \times 10^{-5}$	$4,7 \times 10^{-5}$
90	$2,5 \times 10^{-4}$	$3,5 \times 10^{-4}$	$7,6 \times 10^{-5}$	$4,2 \times 10^{-5}$
C.V. $\%^{\mathrm{b}}$	6.6	5.9	4.8	5,4

$\mathrm{a}=$ each measurement performed in triplicate. $\mathrm{b}=$ C.V. \% Coefficient of variation of metals in solution model obtained from the quantifications over the time.

Aquino F. W. B. \& Franco D. W.
Formation of dextran deposits in sugar cane spirits
Supporting Information

Figure I. Photomicrographs obtained by scanning electronic microscopy (SEM) of precipitates of dextrans used for evaluation of the suitability of the use of membranes to retain the dextran deposits in the model solutions.

Figure II. Precipitated dextran $\mathrm{Mw} 2.1 \times 10^{6} \mathrm{Da}$ in a model solution.

Aquino F. W. B. \& Franco D. W.
Formation of dextran deposits in sugar cane spirits
Supporting Information

Figure III. ${ }^{13} \mathrm{C}$-NMR spectra of a dextran standard and precipitates of a dextran (Mw 2.1×10^{6} $\mathrm{Da})$ at pH values of 4.4 and 5.5.

