Supporting information for Revised Manuscript ID cb-2011-00091m

Reconstitution of Functional Mycobacterial Arabinosyltransferase AftC Proteoliposome and Assessment of Decaprenylphosphorylarabinose Analogues as Arabinofuranosyl Donors

Jian Zhang ${ }^{1, \dagger}{ }^{\dagger}$, Shiva K. Angala ${ }^{2}$, Pradeep K. Pramanik ${ }^{2}$, Kai Li 2, Dean C. Crick ${ }^{2}$, Abraham
Liav 2, Adam Jozwiak ${ }^{3}$, Ewa Swiezewska ${ }^{3}$ Mary Jackson ${ }^{2}$ and Delphi Chatterjee ${ }^{2, *}$

1. Synthesis of Z-NPA, E-FPA and Z-HPA

Z-NPA, R=

Z-FPA, R=

E-FPA, R=

Scheme S1. Synthesis of DPA analogues

1,2,3,5-(Tetra tert-butyldimethylsilyl)-D-arabinose (Ara-2). D-Arabinose ($2 \mathrm{~g}, 13.3 \mathrm{mmol}$) and imidazole ($4.5 \mathrm{~g}, 66 \mathrm{mmol}$) were dissolved in DMF $(100 \mathrm{~mL})$ and to the stirred solution TBSCl ($12 \mathrm{~g}, 80 \mathrm{mmol}$) was slowly added. The mixture was stirred at room temperature over night. Ice water was added to the reaction until no more precipitate was produced. The reaction was filtered and the pellet was washed with water, dissolved in acetone and concentrated by
rotatory evaporator. The residue was purified by silica-gel column chromatography at EtOAc/Hexane, $1: 40$ to give Ara-2 ($6.631 \mathrm{~g}, 84.2 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.13$ ($\mathrm{s}, 1$ H), $4.01(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~m}, 36 \mathrm{H}), 0.10(\mathrm{~m}, 24 \mathrm{H})$.

2,3,5-(Tri tert-butyldimethylsilyl)-D-arabinose (Ara-3). To a solution of Ara-2 (6.631 g) in dichloromethane (200 ml), trifluoroacetic acid (43 ml) was added. The mixture was stirred for two minutes before being poured into a stirred solution of $\mathrm{NH}_{4} \mathrm{OH}(16 \mathrm{ml})$ in MeOH at $-20^{\circ} \mathrm{C}$. The mixture was then allowed to warm to room temperature before partitioning between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic phase was taken, washed with NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotatory evaporator followed by column chromatography (EtOAc/Hexane, 1:15) to give Ara-3 (2.8g, 50.7\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.56(\mathrm{dd}, J=6.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.34(\mathrm{dt}, J=6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H})$, 3.94-3.56 (m, 3 H), $0.90(\mathrm{~m}, 27 \mathrm{H}), 0.11-0.08(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 104.46$, $96.77,88.36,85.19,81.19,78.10,77.85,63.85,26.16,25.92,18.58,18.06,-4.677,-5.195$.

Acetyl 2,3,5-(Tri tert-butyldimethylsilyl)-D-arabinose (Ara-4). To a solution of Ara-3 (2.8 g, $1 \mathrm{mmol})$ in dry pyridine $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{Ac}_{2} \mathrm{O}(0.78 \mathrm{~mL}, 1.5 \mathrm{mmol})$ was added drop-wise with a syringe. The solution was stirred for 4 h at room temperature before being diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $5 \% \mathrm{HCl}$ and water. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give rough product. The crude product was then purified by chromatography on silica gel (hexane/EtOAc, 60:1 \rightarrow 40:1) to give Ara-4 ($2.7 \mathrm{~g}, 99 \%$). TLC performed on hexane/EtOAc, 40:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.16-4.05(\mathrm{~m}, 8 \mathrm{H}), 3.80-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.05$
$(\mathrm{s}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 27 \mathrm{H}), 0.11-0.08(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 170.45, 103.40, 89.21, 82.56, 78.30, 63.44, 21.37, 18.55, 18.02, 17.94, -3.97, -4.62, -4.82, -5.17, -5.20.

Dibenzyl 2,3,5-(Tri tert-butyldimethylsilyl)-D-arabinosyl phosphate (Ara-6). To a solution of Ara-4 ($450 \mathrm{mg}, 0.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{TMSBr}(0.51 \mathrm{ml}, 4.0 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 2 h and dried in vacuo for 2 h . The resulting Ara-5 ($345 \mathrm{mg}, 1.1 \mathrm{mmol}$) and dibenzyl phosphate $(460 \mathrm{mg}, 1.65 \mathrm{mmol})$ were dried under vacuum for an additional hour and then dry toluene $(5 \mathrm{~mL})$ was added to the reaction mixture. Dry triethylamine ($0.34 \mathrm{~mL}, 1.82 \mathrm{mmol}$) was added to the mixture. A precipitate was observed within 1-2 minutes and the reaction mixture was allowed to stir for 16 hours at room temperature under an atmosphere of nitrogen. The solvent was removed in vacuo. The product was purified by chromatography on silica gel (hexane/EtOAc, 8:1 $\rightarrow 4: 1$) to yield Ara-6 ($0.225 \mathrm{~g}, 37.2 \% 2$ step yield). TLC was performed with hexane/EtOAc $8: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.72$ (dd, $\underline{0.75} \mathrm{H}, J=3.2,5.2 \mathrm{~Hz}, \mathrm{H}-1 \beta$), $5.65(\mathrm{~d}, \underline{0.25} \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{H}-1 \alpha), 5.08-5.01(\mathrm{~m}, 4 \mathrm{H}), 4.04$ $(\mathrm{m}, 2 \mathrm{H}), 3.84-3.56(\mathrm{~m}, 3 \mathrm{H}), 0.90-0.82(\mathrm{~m}, 27 \mathrm{H}), 0.111--0.026(\mathrm{~m}, 18 \mathrm{H})$. HRMS (ES) calculated $\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{O}_{8} \mathrm{PSi}_{3} 775.3617$ [M-H]. Found 775.3614.

2,3,5-(Tri tert-butyldimethylsilyl)-D-arabinosyl phosphate (Ara-7). Ara-6 (149 mg, 0.06 $\mathrm{mmol})$ was dissolved in a mixture of ethanol $(5 \mathrm{~mL})$ and triethylamine $(0.1 \mathrm{~mL}, 3.0 \mathrm{mmol})$. Then $10 \% \mathrm{Pd} / \mathrm{C}(15 \mathrm{mg}, 30 \% \mathrm{w} / \mathrm{w})$ was added. The reaction vessel was evacuated and flushed three times with hydrogen gas before allowing the reaction mixture to stir for 48 hours at room temperature under a balloon of hydrogen. TLC tracked the reaction using $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}$,

50:10:0.6. The catalyst was filtered and washed with ethanol. The filtrate was concentrated and the residue was dried under vacuum to afford the triethlammonium salt Ara-7 as an oil (0.102 g , 90%). HRMS (ES^{-}) calculated $\mathrm{C}_{23} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{PSi}_{3} 571.2713$ [M-H]. Found 571.2716.

Farnesol

To an ice-cold solution of Nerol or Farnesol ($88 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) in DCM (5 mL) was added trichloroacetonitrile $(0.1 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and $\mathrm{DBU}(10 \mu \mathrm{~L})$. The mixture was stirred at room temperature for 90 mins and dried. The mixture was purified by column chromatography (EtOAc/Hexane, 1:8) to give the trichloroacetimidate products.

Z-Neroyl trichloroacetimidate. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.45(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}$), 5.08 $(\mathrm{m}, 1 \mathrm{H}), 4.79(\mathrm{~d}, 2 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.14(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.09,143.80,132.43,123.82,118.71,66.30,32.54,26.92,25.92$, 23.81, 17.92.
\boldsymbol{E}-Farnesyl trichloroacetimidate. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.45(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 5.08$ (m, 2 H), 4.79 (d, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 2.11-1.93 (m, 8 H), 1.71 (s, 3 H$), 1.66$ ($\mathrm{s}, 1 \mathrm{H}$), 1.59 (s, 3 H), $1.53(\mathrm{~s}, 3 \mathrm{H})$.

Z-Neroyl-2,3,5-(Tri tert-butyldimethylsilyl)-D-arabinosyl phosphate (Ara-8a). A solution of trichloroacetimidate ($35 \mathrm{mg}, 0.06 \mathrm{mmol}$) in toluene $(2.5 \mathrm{~mL})$ was added to triethyl amine salt of Ara-7 ($30 \mathrm{mg}, 0.19 \mathrm{mmol}$) and mixture was stirred at $65^{\circ} \mathrm{C}$ for 3 h . It was then dried and the residue was purified by chromatography with silica gel $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 5: 1\right)$ to give Ara-8a (40
$\mathrm{mg}, 92.4 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.85(\mathrm{~m}, 0.75 \mathrm{H}, \mathrm{H}-1 \beta), 5.45(\mathrm{~m}, 0.25 \mathrm{H}, \mathrm{H}-1 \alpha)$, $5.38(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{H}-3 \alpha), 5.05(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H})$, 2.11-2.00 (m, 6 H), 1.67, 1.65, $1.56(3 \times \mathrm{Me}), 0.91-0.85(\mathrm{~m}, 18 \mathrm{H}), 0.13-0.03(\mathrm{~m}, 27 \mathrm{H})$. HRMS (ES') calculated $\mathrm{C}_{33} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{PSi}_{3} 707.3965[\mathrm{M}-\mathrm{H}]$. Found 707.3966.

E-Farnesyl-2,3,5-(Tri tert-butyldimethylsilyl)-D-arabinosyl phosphate (Ara-8b). A solution of trichloroacetimidate ($25 \mathrm{mg}, 0.3 \mathrm{mmol}$) in toluene (2.5 mL) was added to triethyl amine salt of Ara-7 ($30 \mathrm{mg}, 0.19 \mathrm{mmol}$) and mixture was stirred at $65^{\circ} \mathrm{C}$ for 3 h . It was then dried and the residue was purified by chromatography with silica gel $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}, 5: 1\right)$ to give Ara- 8 b (65 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.73$ (dd, $J=10.8,20.0 \mathrm{~Hz}, 0.75 \mathrm{H}, \mathrm{H}-1 \beta$), $5.46(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 0.25 \mathrm{H}, \mathrm{H}-1 \alpha), 5.39(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{H}-3 \alpha), 5.32(\mathrm{t}, J=6.4 \mathrm{~Hz}, 0.75 \mathrm{H}-3 \beta), 5.16-5.06$ (m, 5H), 4.14-3.98 (m, 2 H), 3.91 (d, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.81-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}$, $1 \mathrm{H}), 2.30-2.00(\mathrm{~m}, 10 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}), 1.57(\mathrm{~s} 6 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 18 \mathrm{H}), 0.11-0.03(\mathrm{~m}, 27 \mathrm{H})$.

Z-Nerylphosphoryl D-arabinose (Z-NPA). Ara-8a ($30 \mathrm{mg}, 0.042 \mathrm{mmol}$) was deprotected by treatment with ammouium fluoride (100 mg) and 15% methanolic ammonium hydroxide (2 mL) in $\mathrm{MeOH}(5 \mathrm{~mL})$ at $65{ }^{\circ} \mathrm{C}$ for 22 h . The mixture was cooled and diluted with DCM. The precipitate was filtered off and washed with $\mathrm{DCM} / \mathrm{MeOH}, 5: 1$. The filtrate was dried and residue was chromatographed on silica gel. The product was eluted with mixture of 65:125:4, DCM/MeOH/ $\mathrm{NH}_{4} \mathrm{OH}$ to give Z-NPA (9 mg , yield: 58.1\%). HRMS (ES $)$ calculated $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{P}$ 365.1371 [M-H]. Found 365.1369.
$\boldsymbol{E}, \boldsymbol{E}$-Farnesylphosphoryl D-arabinose (E-FPA). E-FPA was synthesized following the procedure of preparing Z-NPA. HRMS (ES $)$ calculated $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{P} 433.1997$ [M-H]. Found 433.2000 .

Z,Z-Farnesylphosphoryl D-arabinose (Z-FPA). Z-FPA was synthesized following the procedure of preparing Z-NPA. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): d $5.49(\mathrm{~m}, 1 \mathrm{H}$, partially
overlapped with the $\mathrm{H}-1$ signal), $5.48(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.44(\mathrm{t}, J=7.2 \mathrm{~Hz}), 4.44(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=3.0,11.8 \mathrm{~Hz}), 3.63(\mathrm{dd}, J=5.7,12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.20-1.92(\mathrm{~m}, 8 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ES) calculated $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{P} 433.1997$ [M-H]. Found 433.2050.

Z,Z,Z,Z,E,E-heptaprenylphosphoryl D-arabinose (Z-HPA). Z-HPA was synthesized according to an established procedure ${ }^{1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$): $\mathrm{d} 5.48(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 5.42(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.09(\mathrm{~m}, 4 \mathrm{H}), 4.41(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{dd}, J=4.4,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=2.9,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J$ $=5.37,12.2 \mathrm{~Hz} 1 \mathrm{H}), 2.14-1.97(\mathrm{~m}, 20 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$, $1.61(\mathrm{~s}, 6 \mathrm{H}), 1.37-1.31(\mathrm{~m}, 6 \mathrm{H})$. HRMS (ES') calculated $\mathrm{C}_{40} \mathrm{H}_{66} \mathrm{O}_{8} \mathrm{P} 705.4495$ [M-H]. Found 705.4480 .
${ }^{1}$ Liav, A.; Ciepichal, E.; Swiezewska, E.; Bobovská, A.; Dianišková, P.; Blaško, J., Stereoselective syntheses of heptaprenylphosphoryl β-D-arabino-and β-D-ribo-furanoses. Tetrahedron Letters 2009, 50, (19), 2242-2244.

2. Protein Identification for AftC (Rv2673)

(1) SDS-PAGE of AftC stained with Coomasie Blue

Figure S1. SDS-PAGE analysis of AftC (Rv2673). The cell lysate was applied to affinity chromatography and the column was washed with 20 mL of Tris- HCl buffer with 0.1% Igepal CA-630 (pH 8.0) and eluted with Tris- HCl buffer containing 5 mM to 300 mM of imidazole. The partially purified AftC was eluted in the buffer containing 150 mM of imidazole. "E" represents the M. smegmatis control strain carried the empty plasmid, pJAM2 and "Rv" represents the pJAMRv2673 strain with expression of AftC.

(2) Tryptic digestion.

Figure S2. MALDI analysis of purified AftC (Rv2673). To prepare MALDI sample, AftC was subjected to SDS-PAGE (15\%), stained with Coomassie Brilliant Blue, and AftC band was cut from the gel and subjected to in-gel tryptic digestion. (A) MALDI spectrum of peptides (assigned in the frame in panel B) after tryptic digestion. (B) Results on the MASCOT searching engineer. The score of 122 in MASCOT (left) represented AftC whose peptide fragments and coverage map are shown in the frame.

3. AraT assays using AftC proteoliposome and Z-FPA

A

Figure S3. AraT assays with AftC proteoliposome, a linear trisaccharide (A) and a linear tetrasaccharide (B) as acceptor. The enzymatic products were immediately subjected to methylation and ESI-MS analysis after completing the assays. The linear disaccharide did not yield any enzymatic product with AftC proteoliposome.

4. Thin layer chromatography of lipid extracts from M.tuberculosis, H37Rv

Figure S4A. Thin Layer Chromatography plate of lipid extract from M. tuberculosis H37Rv cells. Bands were visualized after dipping in α-naphthol. The total lipid extracts where subjected to preparative TLC, bands were excised as labeled on the TLC plate and extracted from the silica gel with $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(2: 1, \mathrm{~V}: \mathrm{V})$. Organic solvents were removed and aliquot of lipid preparations were analysed by mass spectrometry. Lipids were identified using M. tuberculosis lipid database $\{$ Sartain, 2011 \#46\}. All of the lipid fractions were used to fabricate AftC proteoliposome.

M.Tb Total lipids	Amount used in making Aftc proteoliposomes	Concentration of AftC used in making proteoliposomes (ug)
Band-I	1 mg	20 ug
Band-II	0.9 mg	20 ug
Band-III	0.6 mg	20 ug
Band-IV	1.0 mg	20 ug
Band-V	1.0 mg	20 ug
Band-VI	0.2 mg	20 ug

Note: Reconstitution protocol described in materials and methods

Percentage conversion of the enzymatic product

			$\%$ Acceptor
Product	conversion		
lipid I	$1.5^{*} \mathrm{e} 6$	$1.8^{*} \mathrm{e} 3$	0.14
lipid II	$1.2^{*} \mathrm{e} 6$	$1.1^{*} \mathrm{e} 3$	0.09
lipid III	$1.33^{*} \mathrm{e} 6$	$1.5^{*} \mathrm{e} 3$	0.11
lipid IV	$1.5^{*} \mathrm{e} 6$	$3.2^{*} \mathrm{e} 3$	0.21
lipid V	$1.15^{*} \mathrm{e} 6$	$1.2^{*} \mathrm{e} 3$	0.1
lipid VI	$1.26^{*} \mathrm{e} 6$	$1.2^{*} \mathrm{e} 3$	0.09

S4B. Chart showing the amounts of lipids obtained after extraction.

Comparable amounts ($20 \mu \mathrm{~g}$) of lipids were used in each case for reconstitution and AftC assay.

S4C. In one preliminary experiment, we could show that AftC activity is somewhat better in comparison to other bands isolated from the preparative TLC (see S.4A). We reason that overall poor percentage conversion is due to degradation of proteoliposomes and/or poor incorporation of AftC . This issue is currently being pursued actively with many other lipids.

5. Quantitation of Enzymatic products by MALDI-TOF analysis

Figure S5. Standard curve obtained after mass spectrometry analysis of Aras and Ara ${ }_{6}$. Enzymatic product was quantitated based on the area and height of the peaks of product to substrate. Analysis was performed in sets of triplicates.

Quantitation of Enzymatic Product

	Peak heights					
	Ara6	Ara5		Ratio (height)	Experimental Ratio	Actual Ratio
Enzymatic product \% conversion						
Z-NPA	790	13386	0.059016883	0.059016883	0.086283	7.9
Z-FPA	1577	9577	0.164665344	0.164665344	0.240741	19.4
E-FPA	0	36595	0	0	0	0.0
Z-HPA	3299	22946	0.143772335	0.143772335	0.210195	17.4

6. Figure S6. ESI-MS Analysis of Band IV. Mass spectra were performed in the negative ion mode.

