Insights into the Reaction Mechanism of the Prolyl-Acyl Carrier Protein Oxidase Involved in Anatoxin-a and Homoanatoxin-a Biosynthesis

Stéphane Mann ${ }^{* \square}$, Bérangère Lombard", Damarys Loew" ${ }^{\prime \prime}$, Annick Méjean ${ }^{* \square \$}$, and Olivier Ploux ${ }^{* D^{*}}$

${ }^{\ddagger}$ Chimie ParisTech, ENSCP, Laboratoire Charles Friedel, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France, ${ }^{\square}$ CNRS, UMR 7223, 75005 Paris, France
${ }^{\text {s }}$ Université Paris Diderot-Paris 7, 75013 Paris, France,
"Institut Curie, Centre de Recherche, Laboratory of Proteomic Mass Spectrometry, 26 rue d'Ulm 75248, Paris Cedex 05, France.
*To whom correspondence should be addressed. Tel/Fax.: +(33) 1442767 01. E-mail: olivierploux@enscp.fr.

Supporting Information

Figure S1. Alignment of AnaB and human isovaleryl-CoA dehydrogenase (hIVD) sequences. The active site base in hIVD (E254) and the corresponding residue in AnaB (E244) are highlighted in red. A star indicates identity, a colon strong similarity, and a dot weak similarity.

hIVD	HSLLPVDDAINGLSEEQRQLRQTMAKFLQEHLAPKAQEIDRSNEFKNLREFWKQLGNLGV	60
Anab	-MDFAWN---SQQIQFRKKVIQFAQQSLISDLIKNDKEEIFN--RDAWQKCSEFGV	50
hIVD	LGITAPVQYGGSGLGYLEHVLVMEEISRASGAVGLSYG--AHSNLCINQLVRNGNEAQKE	118
AnaB	HGWPIPARYGGQELDILTTAYALQGLGYGCKDNGLIFAMNAHIWACEMPLLTFGTEEQKE	110
hIVD	KYLPKLISGEYIGALAMSEPNAGSDVVSMKLKAEKKGNHYILNGNKFWITNGPDADVLIV	178
AnaB	KYLPLLCRGGWIASHAATEPQAGSDIYSLKTTAQKDGDKYILNGYKHYVTNGTIADLFII	170
hIVD	YAKTDLAAVPASRGITAFIVEKGMPGFSTSKKLDKLGMRGSNTCELIFEDCKIPAANILG	238
Anab	FATIDPSLG--KEGLTTFMIEKDTPGLILSKPISKMGMRTAEVPELRLENCEVSAANRLG :*. * : ..*:*:*: :**. **: ** :.*:*** : : ** :*:*::.*** **	228
hIVD	HENKGVYVLMSGLDLERLVLAGGPLGLMQAVLDHTIPYLHVREAFGQKIGHFQLMQGKMA	298
AnaB	EEGTGLAIFNHSMEWERGFILAAAVGTMERLLEQSIRYARSHKQFGQAIGKFQLVANKLV	288
hIVD	DMYTRLMACRQYVYNVAKACDEGHCTAKDCAGVILYSAECATQVALDGIQCFGGNGYIND	358
AnaB	EMKLRLENAKAYLYKVAWMKENKQMALLEASMANLYISEAWVQSCLEAIEIHGAYGYLTN	348
	:* ** .: *:*:** : : : : : . ** :*. .* .*:.*: .*. **:.	
hIVD	FPMGRFLRDAKLYEIGAGTSEVRRLVIGRAFNADFH 394	
AnaB	TELERELRDAIASKFYSGTSEIQRVVIAKFLGL--- 381	
	: * **** : : ****: :*:**.: :	

Figure S2. Polyacrylamide gel electrophoresis in denaturing condition of the purified recombinant wild-type AnaB (WT AnaB) and E244A AnaB. Left: five $\square \mathrm{g}$ of pure fractions were loaded, and the gel was run and stained using coomassie blue. The molecular weight markers (M) were the followings from top to bottom: $66,45,36,29,24,20,14 \mathrm{kDa}$. Right: the relative migrations of the markers were plotted against their molecular weight on a semilog plot. The data for the following markers: $45,36,29$, and 24 kDa , were fitted to a logarithmic function using a non-linear regression analysis, which equation is shown below the graph (KaleidaGraph, Synergy Software). AnaB migrated as a 42 kDa rather than as a 46 kDa polypeptide, probably because it was not fully denatured in these conditions or because it was more compact than expected.

Figure S3-S16. LC-MS/MS analysis of the AnaB-catalyzed oxidation of prolyl-AnaD and of its analogues. The substrates were incubated in the presence of wild-type AnaB, E244A AnaB or in the absence of enzyme, for 5 min at $28^{\circ} \mathrm{C}$. The total ion current chromatograms, the ESI-MS spectra at substrate and product retention times, their deconvoluted mass spectra, and the corresponding MS/MS spectra are presented.

Figure S3. Analysis of the reaction of prolyl-AnaD in the presence of $10 \square$ M wild-type AnaB. A. Analysis of the peak at 15.73 min . The major species is prolyl-AnaD lacking the N-terminal Met: observed, 14246.6 Da , calculated, 14247.2 Da . Minor species at $\mathrm{M}+97$ and $\mathrm{M}+178$ were also observed. B. Analysis of the peak at 16.07 min . The major species is dehydroprolyl-AnaD lacking the N-terminal Met: observed, 14244.8 Da , calculated, 14245.2 Da . Minor species at $\mathrm{M}+97$ and $\mathrm{M}+178$ were also observed.

Figure S4. Analysis of the reaction of prolyl-AnaD in the absence of enzyme. A. Analysis of the peak at 15.55 min . The major species is prolyl-AnaD lacking the N-terminal Met: observed, 14 246.4 Da, calculated, 14247.2 Da . Minor species at $\mathrm{M}+97$ and $\mathrm{M}+178$ were also observed. B. Analysis of the shoulder at 16.49 min . Residual intact prolyl-AnaD was observed with a minor species corresponding to prolyl-AnaD lacking the G2-R18 sequence, probably arising from an unexpected proteolytic cleavage at the engineered thrombin site (LVPRGS). No oxidation product was detected. C. The sum of the MS/MS spectra for the charged species (13+, 14+, 15+, 16+, from top to bottom) observed in the region around 16.5 min are presented.

Figure S5. Analysis of the reaction of prolyl-AnaD in the presence of $10 \square \mathrm{M} \mathrm{E244A}$ AnaB. A. Analysis of the peak at 15.52 min . The major species is prolyl-AnaD lacking the N-terminal Met: observed, 14246.9 Da , calculated, 14247.2 Da . Minor species at $\mathrm{M}+97$ and $\mathrm{M}+178$ were also observed. B. Analysis of the shoulder at 16.78 min . Residual intact prolyl-AnaD was observed. No oxidation product was detected. C. The sum of the MS/MS spectra for the charged species (13+, $14+, 15+, 16+$, from top to bottom) observed in the region around 16.2 min are presented.

Figure S6. Analysis of the reaction of $\left[2-{ }^{2} \mathrm{H}\right]-\mathrm{L}-\mathrm{prolyl}-\mathrm{AnaD}$ in the absence of enzyme. A. Analysis of the peak at 15.62 min . The major species is [$2-{ }^{2} \mathrm{H}$]-L-prolyl-AnaD lacking the N-terminal Met: observed, 14247.2 Da , calculated, 14248.2 Da . A minor species at $\mathrm{M}+178$ was also observed. B. Analysis of the shoulder at 17.05 min . Residual intact [$2-{ }^{2} \mathrm{H}$]-L-prolyl-AnaD was observed together with minor species corresponding to prolyl-AnaD lacking the G2-R18 sequence, probably arising
from an unexpected proteolytic cleavage at the engineered thrombine site (LVPRGS) and holoAnaD. No oxidation product was detected.

Figure S7. Analysis of the reaction of [2- $\left.{ }^{2} \mathrm{H}\right]-\mathrm{L}-$ prolyl-AnaD in the presence of $10 \square \mathrm{M}$ E244A AnaB. A. Analysis of the peak at 16.39 min . The major species is [2- $\left.{ }^{2} \mathrm{H}\right]-\mathrm{L}-\mathrm{prolyl}-\mathrm{AnaD}$ lacking the N-terminal Met: observed, 14247.2 Da , calculated, 14248.2 Da . Minor species at $\mathrm{M}+98$ and $\mathrm{M}+$ 178 were also observed. B. Analysis of the shoulder at 17.51 min . Residual intact [2- $\left.{ }^{2} \mathrm{H}\right]$-L-prolylAnaD was observed together with minor species corresponding to prolyl-AnaD lacking the G2-R18 sequence, probably arising from an unexpected proteolytic cleavage at the engineered thrombin site (LVPRGS) and holo-AnaD. No oxidation product was detected.

Figure S8. Analysis of the reaction of $\left[2-{ }^{2} \mathrm{H}\right]$-L-prolyl-AnaD in the presence of $5 \square \mathrm{M}$ wild-type AnaB. A. Analysis of the peak at 16.44 min . The major species is [2- $\left.{ }^{2} \mathrm{H}\right]-\mathrm{L}-$ prolyl-AnaD lacking the N-terminal Met: observed, 14247.2 Da , calculated, 14248.2 Da . Minor species at $\mathrm{M}+98$ and $\mathrm{M}+$ 178 were also observed. The MS/MS spectrum shows the presence of the $m / z 358$ and 359 ions. B. Analysis of the peak at 16.96 min . The major species is dehydroprolyl-AnaD lacking the N-terminal Met: observed, 14245.2 Da, calculated, 14245.2 Da . Minor species at $\mathrm{M}+98$ and $\mathrm{M}+178$ were also observed. The MS/MS spectrum shows a major ion at $m / z 356$.

Figure S9. Analysis of the reaction of [5,5- $\left.{ }^{2} \mathrm{H}_{2}\right]$-L-prolyl-AnaD in the presence of $10 \square \mathrm{M}$ wild-type AnaB. A. Analysis of the peak at 16.68 min . The major species is $\left[5,5-{ }^{2} \mathrm{H}_{2}\right]$-L-prolyl-AnaD lacking the N-terminal Met: observed, 14248.3 Da , calculated, 14249.2 Da . Minor species at $\mathrm{M}+99$ and $\mathrm{M}+178$ were also observed. B. Analysis of the peak at 17.03 min . The major species is $\left[5-{ }^{2} \mathrm{H}\right]-$ dehydroprolyl-AnaD lacking the N-terminal Met: observed, 14245.4 Da , calculated, 14 246.2 Da. Minor species at $M+99$ and $M+178$ were also observed.

Figure S10. Analysis of the reaction of $(5 S)-\left[5-^{2} \mathrm{H}\right]$-L-prolyl-AnaD in the presence of $10 \square \mathrm{M}$ wildtype AnaB. A. Analysis of the peak at 16.40 min . The major species is $(5 S)-\left[5-{ }^{2} \mathrm{H}\right]-\mathrm{L}$-prolyl-AnaD lacking the N-terminal Met: observed, 14247.1 Da , calculated, 14248.2 Da . Minor species at $\mathrm{M}+$ 98 and $M+178$ were also observed. B. Analysis of the peak at 16.81 min . The major species is [5$\left.{ }^{2} \mathrm{H}\right]$-dehydroprolyl-AnaD lacking the N-terminal Met: observed, 14245.6 Da , calculated, 14246.2 Da. Minor species at $\mathrm{M}+98$ and $\mathrm{M}+178$ were also observed.

Figure S11. Analysis of the reaction of $\left[2,3,3,4,4,5,5-{ }^{2} \mathrm{H}_{7}\right]-\mathrm{L}-\mathrm{prolyl}-\mathrm{AnaD}$ in the absence of enzyme. A. Analysis of the peak at 16.40 min . The major species is $\left[2,3,3,4,4,5,5-{ }^{2} \mathrm{H}_{7}\right]$-L-prolyl-AnaD lacking the N-terminal Met: observed, 14253.5 Da , calculated, 14254.2 Da . Minor species at $\mathrm{M}+$ 104 and $\mathrm{M}+178$ were also observed. B. Analysis of the peak at 17.49 min . Residual [2,3,3,4,4,5,5$\left.{ }^{2} \mathrm{H}_{7}\right]$-L-prolyl-AnaD was observed together with degraded species: holo-AnaD (14 150.1 Da) and thrombin digested species (12503.4 Da). No oxidation product was observed.

Figure S12. Analysis of the reaction of $\left[2,3,3,4,4,5,5-{ }^{2} \mathrm{H}_{7}\right]$-L-prolyl-AnaD in the presence of $10 \square \mathrm{M}$ E244A AnaB. A. Analysis of the peak at 16.23 min . The major species is $\left[2,3,3,4,4,5,5{ }^{-}{ }^{2} \mathrm{H}_{7}\right]$-L-prolyl-AnaD lacking the N-terminal Met: observed, 14253.6 Da , calculated, 14 254.2 Da. Minor species at $M+104$ and $M+178$ were also observed. B. Analysis of the peak at 17.40 min . Residual [2,3,3,4,4,5,5- ${ }^{2} \mathrm{H}_{7}$]-L-prolyl-AnaD was observed together with degradaded species: holo-AnaD (14 150.1 Da) and thrombin digested species (12503.4 Da). No oxidation product was observed. C. The sum of the MS/MS spectra for the charged species (13+, 14+, 15+, 16+, from top to bottom) observed in the region around 17.5 min are presented. Enlargements of the spectra are shown on the right hand side.

Figure S13. Analysis of the reaction of $\left[2,3,3,4,4,5,5-{ }^{2} \mathrm{H}_{7}\right]$-L-prolyl-AnaD in the presence of $10 \square \mathrm{M}$ wild-type AnaB. A. Analysis of the peak at 15.90 min . The major species is $\left[3,3,4,4,5,5{ }^{2} \mathrm{H}_{6}\right]$ - $\mathrm{L}-$ prolyl-AnaD lacking the N-terminal Met: observed, 14252.5 Da , calculated, 14253.2 Da . Minor species at $M+104$ and $M+178$ were also observed. B. Analysis of the peak at 16.66 min . The major species is deuterium labeled dehydroprolyl-AnaD lacking the N-terminal Met: observed, 14 250.0 Da. This species corresponded to $\mathrm{M}+5$ (labeled with five deuteriums). A minor species at and $M+178$ was also observed. C. The sum of the MS/MS spectra for the charged species (13+, $14+, 15+, 16+$, from top to bottom) observed in the region around 16.5 min are presented. Enlargements of the spectra are shown on the right hand side.

Figure S14. Analysis of the reaction of 3,4-dehydro-L-prolyl-AnaD in the presence of $10 \square \mathrm{M}$ wildtype AnaB. A. Analysis of the peak at 16.10 min . The major species is 3,4-dehydro-L-prolyl-AnaD lacking the N-terminal Met: observed, 14244.7 Da, calculated, 14244.8 Da . Minor species at $\mathrm{M}+$ 95 and $\mathrm{M}+178$ were also observed. B. Analysis of the peak at 16.81 min . The major species is pyrrole-2-carboxyl-AnaD lacking the N-terminal Met: observed, 14243.1 Da , calculated 14243.8 Da. Minor species at M-94 (holo-AnaD), M + 95 and $\mathrm{M}+178$ and residual 3,4-dehydro-L-prolylAnaD were also observed.

Figure S15. Analysis of the reaction of (4S)-4-fluoro-L-prolyl-AnaD in the presence of $10 \square \mathrm{M}$ wild-type AnaB. A. Analysis of the peak at 15.79 min . The major species is (4S)-4-fluoro-l-prolylAnaD lacking the N-terminal Met: observed, 14264.4 Da , calculated, 14 265.2 Da. Minor species at $M+115$ and $M+178$ were also observed. B. Analysis of the peak at 16.92 min . The pyrrole-2-carboxyl-AnaD lacking the N-terminal Met was observed (observed 14242.7 Da , calculated 14 243.8 Da) together with ($4 S$)-4-fluoro-L-prolyl-AnaD and some thrombin digested species (12 514 Da). C. The sum of the MS/MS spectra for the charged species ($13+, 14+, 15+$, from top to bottom) observed in the region around 17.2 min are presented. Enlargements of the spectra are shown on the right hand side.

Figure S16. Analysis of the reaction of (4R)-4-fluoro-L-prolyl-AnaD in the presence of $10 \square \mathrm{M}$ wild-type AnaB. A. Analysis of the peak at 15.97 min . The major species is ($4 R$)-4-fluoro-L-prolylAnaD lacking the N-terminal Met: observed, 14264.6 Da , calculated, 14 265.2 Da. Minor species at $M+115$ and $M+178$ were also observed. B. Analysis of the peak at 16.87 min. The major species is pyrrole-2-carboxyl-AnaD lacking the N-terminal Met: observed 14242.5 Da, calculated 14243.8 Da. Minor species at $\mathrm{M}+115$ and $\mathrm{M}+178$ were also observed.

Figure S3A.

- TIC of +TOF MS: Exp 1, from Sample 1 (Ploux AnaB WT 001) of E32798L.wiff (lon Spray)

Max. 5.6e5 cps

+TOF MS: E×p 1. 15.727 min from Sample 1 (Ploux AnaB WU'T O01) of E3279日L.wiff
$a=3.59622874015992790 \mathrm{e}-004$, to $=2.8428727732250360 \mathrm{e}+001$ (lon Spray)
$a=3.59622674015992790 \mathrm{e}-004, \mathrm{t0}=-2.84287277322350360 \mathrm{e}+001$ (lon Spray)

Mass reconstruction of +TOF MS: Exp 1, 15.727 min from Sample 1 (Ploux AnaB WiW 001) of E32798L.woiff
Max. 1.4e 4 cps.

	Mass (avg.)		Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	\|14246.6024	\pm		14246.6229	105430.0000	920	920	1.0000	C	v

Tor Product (1018.4): Exp 2, 15.698 min from Sample 1(Ploux AnaB ifit 001) of E32798L.wiff
Max. 43.0 count
$a=3.59622874015992790 \mathrm{e}-004$, to $=-2.84287277322350360 \mathrm{e}+001$ (lon Spray)

Figure S3B.

- TIC of +TOF MS: Exp 1, from Sample 1 (Ploux Ana日 WT 001) of E32798L.wiff (lon Spray)

Max. 5.6e5 cps.

Time, min

- Mass reconstruction of +TOF MS: Exp 1, 16.075 min from Sample 1 (Ploux AnaB WWT 001) of E3279BL.wiff

Max. 4.6e4 cps.

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14244.7971		14244.6673	263286.8652	928	928	1.0000	C	\checkmark

Figure S4A．
－TIC of＋TOF MS：Exp 1，from Sample 1 （Ploux Froly｜AnaD tube 1001）of E3282BL．wiff（Ion Spray）
Max．5．1e5 cps．

$\square \begin{aligned} & \text {＋TOF MS：Exp 1，} 15.545 \text { min from Sample } 1 \text {（Ploux Prolyl AnaD tube } 1001 \text { ）of E3282日L．wiff } \\ & \mathrm{a}=3.59622674015992790 \mathrm{e}-004, \text { to }=-2.84287277322350360 \mathrm{e}+001 \text {（lon Spray）}\end{aligned}$
Max． 1061.0 count

－Mass reconstruction of＋TOF MS：Exp 1， 15.545 min from Sample 1 （Ploux Proly｜AnaD tube 1001 ）of E3282日L．wiff
Max．3．0e4 4 ps．

	Mass（avg．）	Mass（mono．）	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	$\hat{\sim}$
1	14246.4271		14246.3592	211592.0000	911	911	1.0000	C	v

＋TOF Product（891．2）：Exp 3． 15.554 min from Sample 1 （Ploux Proly｜AnaD tube 1 001）of E3282日L．wiff Max． 88.0 counts．
$\mathrm{a}=3.59622674015992790 \mathrm{e}-004, \mathrm{t} 0=-2.84287277322350360 \mathrm{e}+001$（lon Spray）

Figure S4B．
－TIC of＋TOF MS：Exp 1，from Sample 1 （Ploux Prolyl AnaD tube 1 001）of E3282日L．．niff（lon Spray）
Max．5．1e5 cps．

Time, min

$$
\text { Mass reconstruction of +TOF MS: Exp 1, } 16.492 \text { min from Sample } 1 \text { (Ploux Proly| AnaD tube } 1001 \text {) of E3282日L.woiff }
$$

	Mass（avg．）	Mass（mono．）	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14246.3740		14246.4398	14479.0000	927	927	1.0000	C	v

\square＋TOF Product（1018．4）：Exp 3． 16.563 min from Sample 1 （Ploux Prolyl AnaD tube 1001）of E3282日L．．wiff
$a=3.59622674015992790 \mathrm{e}-004, \mathrm{t} 0=-2.84287277322350360 \mathrm{e}+001$（lon Spray）
Max． 5.0 counts．

Figure S4C.

=3.59622674015992790e-004, toj=-2.84287277322350360et001 (lon Spray). Added \& +TOF Product (1018.4): Exp 3. 16.192 min from Sample 1 (Ploux Proly| AnaD tube

2350360 e+001 (Ion Spray)>

\footnotetext{

$a=3.59622674015992790 \mathrm{e}-004, \mathrm{t} 0=-2.84287277322350360 \mathrm{e}+001$ (lon Spray);

$\mathrm{m} / \mathrm{z}, \mathrm{Da}$

a=3.59622674015992790e-004, to=-2.84287277322350360e+001 (lon Spray)). Added \& +TOF Product (391.2): Exp 4, 16.475 min from Sample 1 (Ploux Prolyl AnaD tube...

Figure S5A.

- TIC of + TOF MS: Exp 1, from Sample 1 (Ploux AnaB mutant tube 3 001) of E32858L.wiff (lon Spray)

Max. 5.8e5 cps.

$\square \begin{aligned} & \text { +TOF MS: Exp 1, } 15.515 \text { min from Sample } 1 \text { (Ploux AnaE mutant tube } 3 \text { 001) of E32858L.wiff } \\ & \mathrm{a}=3.59622674015992790 \mathrm{e}-004, \text { to }=-2.84287277322350360 \mathrm{e}+001 \text { (lon Spray) }\end{aligned}$
Time, min

- Mass reconstruction of +TOF MS: Exp 1, 15.515 min from Sample 1 (Ploux AnaE mutant tube 3 001) of E32858L.wwiff

Max. 4.1e4 eps.

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	,
1	14246.8712		14246.7840	243406.2324	903	903	1.0000	C	v

+TOF Froduct (950.5): Exp 2. 15.431 min from. Sample 1(Ploux AnaE mutant tube 3 001) of E3285BL.wiff
$\mathrm{a}=3.59622674015992790 \mathrm{e}-004$, to $=-2.84287277322350360 \mathrm{e}+001$ (lon Spray)
Max. 72.0 counts.

Figure S5B.

+TOF MS: Exp 1, 16.785 min from Sample 1 (Ploux AnaB mutant tube 3 001) of E32858L.wiff
Max. 30.0 counts.
$=3.59622674015992790 \mathrm{e}-004$, to $=-2.84287277322350360 \mathrm{e}+001$ (lon Spray)

- Mass reconstruction of +TOF MS: Exp 1, 16.785 min from Sample 1 (Ploux AnaB mutant tube 3 001) of E3285BL.wiff

Max. 798.8 cps

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14246.7163		14246.9365	4667.0000	920	920	1.0000	C	

Figure S5C.

Max. 40.0 counts.

$=3=39622674015992790$ e-004, to=-2.84287277322350360e+001 (lon Spray)). Added \& + ToF Product (10966.7): Exp 2.21 .327 min from Sample (Ploux AnaB mutant

(Aded < +TOF Product (1018.4): Exp 4, 16398 min trom Sample 1 (Ploux Ana mutant

$=3.59622674015992790$ e-004, to $\mathrm{t}=-2.84287277322350380 \mathrm{e}+001$ (lon Spray)). Added \& +TOF Product (950.6): Exp 2.15 .911 min from Sample 1 (Ploux AnaB mutant

 $\mathrm{a}=3.59622674015992790 \mathrm{e}-004, \mathrm{t} 0=-2.84287277322350360 \mathrm{e}+001$ (lon Spray)) , Added \& +TOF Froduct (B91.2): Exp 3.15 .996 min from Sample 1 (Ploux AnaB mutant t

$\mathrm{a}=3.59622674015992790 \mathrm{e}-004, \mathrm{t} 0=-2.84287277322350360 \mathrm{e}+001$ (lon Spray)) , Added < + TOF Product (891.2): Exp 4. 16.274 min from Sample 1 (Ploux AnaB mutant t.

Figure S6A.

+TOF MS: Exp 1, 15.620 min from Sample 1 (ploux Tube D0 001) of E3836日L..niff Max. 1230.0 counts.$a=3.59622052099220530 \mathrm{e}-004$, to $=-2.82088258295369910 \mathrm{e}+001$ (lon Spray)																								
	100\%	$836.09{ }^{+17}{ }^{89}{ }_{4}^{+48}$				1094.93								${ }_{158}^{+9}$			$\begin{gathered} 1781.93 \\ \substack{1 \\ \hline} \end{gathered}$							
	800		950	1000	1050	1100	1150	1200	1250			$\begin{gathered} 1400 \\ \mathrm{~m} / \mathrm{z}, \mathrm{Da} \end{gathered}$	1450	1500	1550	1800	1850	1700	1750	1800	1850	1900	1950	

Mass reconstruction of +TOF MS: Exp 1, 15.620 min from Sample 1 (ploux Tube DO 001) of E3836日L.wiff Max. 3.2e4 ops.

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14247.1461		14247.0391	122717.0000	912	912	1.0000	C	v
+TOF Product (950.6): Exp 2, 15.596 min from Sample 1 (plou... $a=3.59622052099220530 \mathrm{e}-004, \mathrm{t}=-2.82088258295369910 \mathrm{e}+$..				Max. 126.0 counts		+TOF Product (950.6): Exp 2, 15.596 min from Sample 1 (plou... $\mathrm{a}=3.59622052099220530 \mathrm{e}-004,10=-2.22088258295369910 \mathrm{e}+\ldots$			Max. 126.0 counts.

Figure S6B.

$\square \begin{aligned} & \text { +TOF MS: Exp 1, } 17.052 \text { min from Sample 1 (ploux Tube D0 001) of E3836日L..niff } \\ & \mathrm{a}=3.59622052099220530 \mathrm{e} \text {-004, to }=-2.82088258295369910 \mathrm{e}+001 \text { (lon Spray) }\end{aligned}$

- Mass reconstruction of +TOF MS: Exp 1, 17.052 min from Sample 1 (ploux Tube D0 001) of E3836BL.wiff

Max. 1200.7 cps.

Page S17 of S46

Figure S7A.

- TIC of +TOF MS: Exp 1, from Sample 1 (ploux D11 001) of E38898L.wiff (Ion Spray)

Max. 6.6e5 cps.

+TOF MS: Exp 1, 16.388 min from Sample 1 (ploux D11 001) of E3889BL.wiff
$a=3.59625675394087310 \mathrm{e}-004, \mathrm{t} 0=-2.83840330327584520 \mathrm{e}+001$ (lon Spray)

Mass reconstruction of +TOF MS: Exp 1, 16.388 min from Sample 1 (ploux D11 001) of E3889日L.wiff Max. 3.5e4 cps.

Figure S7B.

- TIC of +TOF MS: Exp 1, from Sample 1 (ploux D11 001) of E38898L.wiff (Ion Spray)

Max. 6.6e5 cps.

Mass, Da									
	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	人
1	14247.3615		14247.2578	13286.0000	972	972	1.0000	C	v

Page S19 of S46

Figure S8A．
－TIC of＋TOF MS：Exp 1，from Sample 1 （Ploux D10 001）of E3888日L．wiff（lon Spray）
Max． 3.4 e 5 cps ．

＋TOF MS：Exp 1， 16.437 min from Sample 1 （Ploux D10 001）of E3888日L．wiff
Max． 491.0 counts．

－Mass reconstruction of＋TOF MS：Exp 1， 16.437 min from Sample 1 （Ploux D10 001）of E3888日L．wiff
Max．2．0e4 cps．

$$
\begin{gathered}
1.45 \mathrm{e} 4 \\
\text { Mass, Da }
\end{gathered}
$$

	Mass（avg．）	Mass（mono．）	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	ヘ
1	14247.2323		14247.2168	129341.3760	960	960	1.0000	C	\checkmark
＋TOF Product（950．6）：Exp 2， 16.443 min from Sample 1 （PI．．． $a=3.59625675394087310 \mathrm{e}-004$, to $=-2.83840330327584520 \mathrm{e} \ldots$				Max． 44.0 counts．		＋TOF Product（950．6）：Exp 2， 16.443 min from Sample 1 （PI．．． $a=3.59625675394087310 \mathrm{e}-004$, to $=-2.83840330327584520 \mathrm{e} \ldots$			Max． 44.0 counts．

Figure S8B.

- TIC of +TOF MS: Exp 1, from Sample 1 (Ploux D10 001) of E3888日L.wiff((lon Spray)

Max. 3.4e5 cps

$a=3.59625675394087310 \mathrm{e}-004$, to $=-2.83840330327584620 \mathrm{e}+001$ (Ion Spray)

- Mass reconstruction of +TOF MS: Exp 1, 16.957 min from Sample 1 (Ploux D10 001) of E3888日L.wiff

Max. 1.6e4 cps.

$$
\begin{aligned}
& 1.45 \mathrm{e} 4 \\
& \text { Mass, Da }
\end{aligned}
$$

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14245.2031 จ		14245.1828	103400.0000	969	969	1.0000	C	\checkmark
	+TOF Product (1018.3): Exp 2, 16.928 min from Sample 1 (P... $a=3.59625675394087310 \mathrm{e}-004, \mathrm{t} 0=-2.83840330327584520 \mathrm{e} \ldots$			Max. 34.0 counts.		+TOF Product (1018.3): Exp 2, 16.928 min from Sample 1 (P... $a=3.59625675394087310 \mathrm{e}-004$, t $0=-2.83840330327584520 \mathrm{e}$.			Max 34.0 counts.

Figure S9A.

- TIC of + TOF MS: Exp 1, from Sample 1 (Ploux tube D2 001) of E3839BL.wiff (Ion Spray)

Max. 4.3e5 cps

T TOF MS: Exp 1, 16.681 min from Sample 1 (Ploux tube D2 001) of E3839日L.wiff Time, min
$a=3.59623333874722190 \mathrm{e}-004$, to $=-2.82623337384502520 \mathrm{e}+001$ (lon Spray)

Mass reconstruction of +TOF MS: Exp 1, 16.681 min from Sample 1 (Ploux tube D2 001) of E38398L. wiff
Max. 7086.6 eps

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14248.2876		14248.2892	56390.0000		975	1.0000	C	\checkmark
+TOF Product (950.7): Exp 2, 16.621 min from Sample 1 (PI... $=3.59623333874722190 \mathrm{e}-004$, to $=-2.82623337384502520 \mathrm{e} \ldots$				Max. 21.0 count.		+TOF Product (950.7): Exp 2, 16.621 min from Sample 1 (PI... $a=3.59623333874722190 \mathrm{e}-004$, $\mathrm{t} 0=-2.82623337384502520 \mathrm{e} \ldots$			Max. 21.0 counts

Figure S9B.

- TIC of + TOF MS: Exp 1, from Sample 1 (Ploux tube D2 001) of E38398L.wiff (Ion Spray)

Max. 4.3e5 cps

Mass reconstruction of +TOF MS: Exp 1, 17.034 min from Sample 1 (Ploux tube D2 001) of E3839BL.wiff
Max. 2.1e4 cps

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	ヘ
1	14245.4257		14245.4098	161128.0000	982	982	1.0000	C	\checkmark
+TOF Product (1018.3): Exp 2, 16.981 min from Sample 1 (P. $\mathrm{a}=3.59623333874722190 \mathrm{e}-004$, to $=-2.82623337384502520 \mathrm{e}$.				Max. 81.0 counts.		+TOF Product (1018.3): Exp 2, 16.981 min from Sample 1 (P... $a=3.59623333874722190 \mathrm{e}-004, \mathrm{t} 0=-2.82623337384502520 \mathrm{e} \ldots$			Max. 81.0 counts

$a=3.59623333874722190 \mathrm{e}-004, \mathrm{t} 0=-2.82623337384502520 \mathrm{e}$.
$t=3.59623333874722190 \mathrm{e}-004, \mathrm{t} 0=-2.82623337384502520$

Figure S10A.

- TIC of + TOF MS: Exp 1, from Sample 1 (Ploux Tube D3 001) of E3840日L.wiff (lon Spray)

Max. 4.0e5 cps

Mass reconstruction of +TOF MS: Exp 1, 16.401 min from Sample 1 (Ploux Tube D3 001) of E3840日L.woiff
Max. 1487.2 cps

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence
1	14247.0970		14247.1049	11614.0000	964	964	1.0000	C

+TOF Product (950.6): Exp 3, 16.470 min from Sample 1 (PI... Max. 22.0
$a=3.59623333874722190 e-004,40=-2.82623337384502520$.
+TOF Product (950.6): Exp 3, 16.470 min from Sample 1 (Plo
Max. 22.0 counts

Figure S10B.

- TIC of + TOF MS: Exp 1, from Sample 1 (Ploux Tube D3 001) of E3840日L.wiff (lon Spray)

Max. 4.0 e 5 cps .

$a=3.59623333874722190 \mathrm{e}-004$, to $=-2.82623337384502520 \mathrm{e}+001$ (Ion Spray)

Mass reconstruction of +TOF MS: Exp 1, 16.809 min from Sample 1 (Ploux Tube D3 001) of E3840日L.wiff Max. 2.9e4 cps.

$a=3.59623333874722190 \mathrm{e}-004, \mathrm{t} 0=-2.82623337384502520 \mathrm{e} .$.

$=3.59623333874722190 \mathrm{e}-004$, to $=-2.82623337384502520$

Figure S11A.

- TIC of + TOF MS: Exp 1, from Sample 1 (Ploux D70 002) of E3986日L.wiff (lon Spray)

Max. 6.4e5 cps

Mass reconstruction of +TOF MS: Exp 1, 16.396 min from Sample 1 (Ploux D70 002) of E3986日L.wiff
Max. 5.3e4 cps

Mass, Da									
	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\cdots
1	14253.5252		14253.3731	298954.2529	955	955	1.0000	C	\underline{v}

+TOF Product (890.7): Exp 2, 16.467 min from Sample 1 (P.
$a=3.59600420361678910 \mathrm{e}-004, \mathrm{to}=-2.78852333268951040$

+TOF Product (890.7): Exp 2, 16.467 min from Sample 1 (P...

Figure S11B.

[^0]

Mass reconstruction of + TOF MS: Exp 1, 17.488 min from Sample 1 (Ploux D70 002) of E3986BL.wiff

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14253.7259		14253.8323	20278.0000	970	970	1.0000	C	\checkmark
	+TOF Product (951.0): Exp 2, 17.522 min from Sample 1 (PI... $a=3.59600420361678910 \mathrm{e}-004, t 0=-2.78852333268951040 \mathrm{e} \ldots$			Max. 25.0 counts.		+TOF Product (951.0): Exp $2,17.522$ min from Sample 1 (PI... $a=3.59600420361678910 \mathrm{e}-004, \mathrm{t} 0=-2.78852333268951040 \mathrm{e} \ldots$			Max. 25.0 counts

+TOF Product (951.0): Exp 2, 17.522 min trom Sample 1 (P)....
$a=3.59600420361678910 \mathrm{e}-004$, to $=-2.78852333268951040 \mathrm{e} .$.
$=359600420361870910$ 2. 17.522 min from sample 1 (Pl...

Figure S12A.

- TIC of +TOF MS: E×p 1, from Sample 1 (Ploux D71 001) of E3987BL.wiff(lon Spray)

Max. 5.1e5 cps.

$\square \quad \begin{aligned} & \text { +TOF MS: Exp 1, } 16.227 \text { min from Sample } 1 \text { (Ploux D71 001) of E3987BL.wiff } \\ & \mathrm{a}=3.5960042036 \text { 1678910e-004, to }=-2.78852333268951040 \mathrm{e}+001 \text { (lon Spray) }\end{aligned}$
Max. 912.0 counts.

- Mass reconstruction of +TOF MS: Exp 1, 16.227 min from Sample 1 (Ploux D71 001) of E3987BL.viff

Max. 4.3e4 cps.

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	ヘ
1	14253.6397		14253.5480	248369.8232	945	945	1.0000	C	\checkmark
	+TOF Product (951.2): Exp 2, 16.231 min from Sample 1 (PI... $\mathrm{a}=3.59800420361678910 \mathrm{e}-004, \mathrm{t} 0=-2.78852333268951040 \mathrm{e} \ldots$			Max. 76.0 counts.		+TOF Product (951.2): Exp 2, 16.231 min from Sample 1 (PI... $a=3.59600420361678910 \mathrm{e}-004,+0=-2.78852333268951040 \mathrm{e} \ldots$			Max. 76.0 counts.

Figure S12B.

- TIC of +TOF MS: Exp 1, from Sample 1 (Ploux D71 001) of E3987日L.wiff (lon Spray)

Max. 5.1e5 cps

$\square \underset{\substack{\text { TOF MS: Exp 1, } 17.398 \text { min from Sample } 1 \text { (Ploux D71 001) of E39878L..wift } \\ \mathrm{a}=3.59600420361678910 \mathrm{e}-0044, \text { to }=-2.78852333268951040 \mathrm{e}+001 \text { (lon Spray) }}}{ }$

- Mass reconstruction of +TOF MS: Exp 1, 17.398 min from Sample 1(Ploux D71 001) of E3987日L.wiff Max. 1117.0 ops

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14253.5238		14253.5956	8992.0000	961	961	1.0000	C	v
+ TOF Product (1018.9): Exp 2, 17.768 min from Sample 1 (PI....$\mathrm{a}=3.59600420361678910 \mathrm{e}-004, \mathrm{t}=-2.78852333268951040 \mathrm{e}+\ldots$				Max. 5.0 counts.		+TOF Product(1018.9): Exp 2, 17.768 min from Sample 1 (PI... $a=3.59600420361678910 \mathrm{e}-004$, to $=-2.78852333268951040 \mathrm{e}+\ldots$			Max. 5.0 counts

Figure S12C.

Figure S13A.

- TIC of + TOF MS: Exp 1, from Sample 1 (Ploux D7 001) of E3895日L.wiff (lon Spray)

Max. 4.8e5 cps

[^1]- Mass reconstruction of +TOF MS: Exp 1, 15.902 min from Sample 1 (Ploux D7 001) of E38958L.wiff Max. 2.3e4 cps

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14252.4911		14252.4942	124597.0000	929	929	1.0000	C	v
+TOF Product (951.0): Exp 2, 15.785 min from Sample 1 (PI... $\mathrm{a}=3.59625722991799210 \mathrm{e}-004, \mathrm{t} 0=-2.82749953196107530 \mathrm{e} .$.				Max. 64.0 counts.		+TOF Product (951.0): Exp 2, 15.785 min from Sample 1 (PI... $a=3.59625722991799210 \mathrm{e}-004, \mathrm{t} 0=-2.82749953196107530 \mathrm{e} .$.			Max. 84.0 counts

Figure S13B.

- Mass reconstruction of +TOF MS: Exp 1, 16.658 min from Sample 1 (Ploux D7 001) of E3895日L.wiff

Max. 3855.1 cp

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	ヘ
1	14250.0377		14250.0418	34428.0000	942	942	1.0000	C	v
+TOF Product (950.8): Exp 2, 16.670 min from Sample 1 (Plo... $a=3.59625722991799210 \mathrm{e}-004, \mathrm{t} 0=-2.82749953196107530 \mathrm{e} .$.				Max. 26.0 counts.		+TOF Product (950.8): Exp $2,16.670 \mathrm{~min}$ from Sample 1 (Plo... $a=3.59625722991799210 \mathrm{e}-004, \mathrm{t} 0=-2.82749953196107530 \mathrm{e} .$.			Max. 26.0 counts

Figure S13C.

+TOF Product (1096.9): Exp 3. 16.955 min from Sample 1 (Ploux D7 00...

Max. 21.0 counts.
$a=3.59625722991799210 e .004,010=2.82749953196107530 \mathrm{e}+001$ (lon ..

+ TOF Product (950.8): Exp 2. 16.92 min ftom Sample 1 (Ploux $\mathrm{D7} 001$
$\mathrm{a}=3.59625722991799210 \mathrm{e} .004$, to $=2.82749953196107530 e+001$ (IO

+ TOF Product (950.8): Exp 2. 16.920 min trom Sample 1 (Ploux D7 O01).
$a=3.59625722991799210 e-004$, to $=2.82749953196107530 \mathrm{e}+001$ (lon ...

\square

+ TOF Froduct (891.5): E×p 3, 16.435 min from Sample 1 (Ploux 07 001)....

Max. 33.0 counts.

$a=3.59625722991799210 \mathrm{e}-004$, to $=-2.82749953196107530 \mathrm{e}+001$ (lon

Figure S14A.

- TIC of + TOF MS: Exp 1, from Sample 1 (Ploux DhPro 001) of E3898日L.,wiff (Ion Spray)

Max. 4.1e5 cps

- Mass reconstruction of +TOF MS: Exp 1, 16.104 min from Sample 1 (Ploux DhPro 001) of E38988L.wiff

Max. 5337.8 cps

+ TOF Product (1018.3): Exp 2, 16.475 min from Sample 1 (P .
$\mathrm{a}=3.59625722991799210 \mathrm{e}-004, \mathrm{to}=-2.82749953196107530 \mathrm{e}$.
$=3.59625722991799210 \mathrm{e}-004$, to $=-2.82749953196107530 \mathrm{e}$

Figure S14B．
－TIC of＋TOF MS：Exp 1，from Sample 1 （Ploux DhPro 001）of E3898日L．wiff（Ion Spray）
Max．4．1e5 cps

＋TOF MS：Exp 1． 16.810 min from Sample 1 （Ploux DhFro O01）of E3898日L．wiff
$\mathrm{a}=3.59625722991799210 \mathrm{e}-004$, to $=2.82749553196107530 \mathrm{e}+001$（lon Spray）
Time，min

－Mass reconstruction of＋TOF MS：Exp 1， 16.810 min from Sample 1 （Ploux DhFro 001）of E38988L．wiff
Max．1．5e4 cp

	Mass（avg．）	Mass（mono．）	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	ヘ
1	14243.0953		14243.0826	114156.0000	956	956	1.0000	C	v

Figure S15A.

$$
\begin{aligned}
& 2.0 .0 \\
& \text { Time, min } \\
& \hline
\end{aligned}
$$

$\square \begin{aligned} & \text { +TOF MS: Exp 1, } 15.789 \text { min from Sample } 1 \text { (Ploux F3 001) of E3896EL.wift } \\ & \mathrm{a}=3.59625722991799210 \mathrm{e} \text {-004, to }=-2.82749953196107530 \mathrm{e}+001 \text { (Ion Spray) }\end{aligned}$
Max. 1022.0 counts

- Mass reconstruction of +TOF MS: Exp 1, 15.789 min from Sample 1 (Floux F3 001) of E38968L.wiff

Max. 2.8e4 cps

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14264.3691		14264.2691	207509.0000	919	919	1.0000	C	\checkmark
+TOF Product (1018.9): Exp 2, 15.794 min from Sample 1 (PI... $a=3.59625722991799210 \mathrm{e}-004, \mathrm{t} 0=-2.82749953196107530 \mathrm{e} \ldots$				Max. 77.0 counts.		+TOF Product (1018.9): Exp 2, 15.794 min from Sample 1 (PI... $a=3.59625722991799210 \mathrm{e}-004$, t $0=-2.82749953196107530 \mathrm{e} \ldots$			Max. 77.0 counts

Figure S15B.

$\square \begin{aligned} & \text { +TOF MS: Exp 1. } 16.916 \text { min from Sample } 1 \text { (Ploux F3 001) of E38968L.wift } \\ & a=3.59625722991799210 \mathrm{e}-004, \text { to }=.2 .82749953196107530 \mathrm{e}+001 \text { (lon Spray) }\end{aligned}$

Mass reconstruction of +TOF MS: Exp 1, 16.916 min from Sam... Max. 1686.5 cps.

- Mass reconstruction of +TOF MS: Exp 1, 16.916 min from Sam...

Max. 1686.5 cps

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	ヘ
1	14242.6622		14242.5906	13303.0000	929	929	1.0000	C	v
+TOF Product (1018.5): Exp 2, 17.076 min from Sample 1 (Plo... $a=3.59625722991799210 \mathrm{e}-004,10=-2.82749953196107530 \mathrm{e}+\ldots$				Max. 7.0 counts.		+TOF Product (1018.5): Exp 2, 17.076 min from Sample 1 (Plo... $a=3.59625722991799210 \mathrm{e}-004, \mathrm{t} 0=-2.82749953196107530 \mathrm{e}+\ldots$			Max. 7.0 counts

Figure S15C.

Page S38 of S46

Figure S16A.

+TOF MS: Exp 1, 15.974 min from Sample 1(Ploux F4001) of E3897 LL...wiff
$\mathrm{a}=3.59625722991799210 \mathrm{e}-004$, to $=-2.82749953196107530 \mathrm{e}+001$ (lon Spray)

- Mass reconstruction of +TOF MS: Exp 1, 15.974 min from Sample 1 (Ploux F4 001) of E3897日L.wiff

Max. 1.9e4 cps

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14264.5784		14264.5297	121431.0000	934	934	1.0000	C	\checkmark
				Max. 31.0 counts. \square+ TOF Product (1020.9): Exp $3,15.939$ min from Sample 1 (PI... $a=3.59625722991799210 \mathrm{e}-004, t 0=-2.82749953196107530 \mathrm{e} \ldots$$\quad$ Max. 31.0 counts					

Figure S16B.

+TOF MS: Exp 1, 16.871 min from Sample 1 (Ploux F4 O01) of E3897日L..wiff
$a=3.59625722991799210 \mathrm{e}-004$, to $=2.82749953196107530 \mathrm{e}+001$ (lon Spray)

- Mass reconstruction of +TOF MS: Exp 1, 16.871 min from Sample 1 (Ploux F4 001) of E3897BL. wiff

Max. 1.6e4 cps

	Mass (avg.)	Mass (mono.)	Apex Mass	Area	Start Scan	Stop Scan	Score	Evidence	\wedge
1	14242.5209		14242.4737	74977.0000	943	943	1.0000	C	\checkmark

Figure S17. The isotopic distributions of ions arising from labeled prolyl-AnaDs were simulated by first calculating the relative abundance of the different species (containing zero, one, two, and more deuterium) and then by calculating for each species its isotopic distribution at unitary resolution. The relative abundance of the species of the same apparent mass ($M, M+1, M+2, M+i, i$ for integer) were then summed and plotted, after normalization. The deuterium labeling of the ions arising from [5,5- ${ }^{2} \mathrm{H}_{2}$]-L-prolyl-AnaD and from [2,3,3,4,4,5,5- ${ }^{2} \mathrm{H}_{7}$]-L-prolyl-AnaD was considered randomly distributed on two or seven positions, respectively. The isotopic distributions of the ions ejected from the products were predicted by considering a complete loss of deuterium at position C 2 , and either a non-stereospecific exchange on C5 positions or a stereospecific or non-stereospecific loss at C5 positions or, and a non-stereospecific exchange on positions C3 and C4. The plots corresponding to the oxidation of the C5-labeled substrates are shown in Figure 4 of the main text. Detailed calculations are given at the end of this Figure.

Ion from [2-²H]-L-prolyl-AnaD

Ion from $\left[5,5-{ }^{2} \mathrm{H}_{2}\right]$-L-prolyl-AnaD

Ion from (5S)-[5-2 H]-L-prolyl-AnaD

cacld	obsd

Ion from [2,3,3,4,4,5,5- $\left.{ }^{2} \mathrm{H}_{7}\right]$-L-prolyl-AnaD

cacld	obsd

Predicted and observed isotopic distribution for the ion arising from the oxidation product of [2$\left.{ }^{2} \mathrm{H}\right]$-L-prolyl-AnaD.

Predicted and observed isotopic distribution for the ion arising from the oxidation product of [2,3,3,4,4,5,5- ${ }^{2} \mathrm{H}_{7}$]-L-prolyl-AnaD.

cacld	obsd

Method used to simulate the isotopic distributions for substrates and products.
The natural isotopic abundance up to $\mathrm{M}+3$, used for all the ions is indicated below. Since all ions only differ in the number of hydrogen or deuterium, the relative abundance will be the same and is given for the molecular formula $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}$ (ion ejected from prolyl-AnaD).

Mass		Normalized relative abundance (\%)	Fractional relative abundance
358	M	100.0	0.78
359	$\mathrm{M}+1$	19.8	0.16
360	$\mathrm{M}+2$	7.1	0.05
361	$\mathrm{M}+3$	1.1	0.01

For any species Mi of mass M and relative abundance a , and for its isotopologues $\mathrm{Mi}+1$, of mass $\mathrm{M}+1$ and relative abundance $\mathrm{b}, \mathrm{Mi}+2$ of mass $\mathrm{M}+2$ and relative abundance c , etc., the isotopic distribution will be as follows:

Mi	$\mathbf{M i + 1}$	Mi+2	Fractional relative abundance	Mass
$0.78 \square \mathrm{a}$			$0.78 \square \mathrm{a}$	M
$0.16 \square \mathrm{a}$	$0.78 \square \mathrm{~b}$		$0.16 \square \mathrm{a}+0.78 \square \mathrm{~b}$	$\mathrm{M}+1$
$0.05 \square \mathrm{a}$	$0.16 \square \mathrm{~b}$	$0.78 \square \mathrm{c}$	$0.05 \square \mathrm{a}+0.16 \square \mathrm{~b}+0.78 \square \mathrm{c}$	$\mathrm{M}+2$
$0.01 \square \mathrm{a}$	$0.05 \square \mathrm{~b}$	$0.16 \square \mathrm{c}$	$0.01 \square \mathrm{a}+0.05 \square \mathrm{~b}+0.16 \square \mathrm{c}$	$\mathrm{M}+3$
	$0.01 \square \mathrm{~b}$	$0.05 \square \mathrm{c}$	$0.01 \square \mathrm{~b}+0.05 \square \mathrm{c}$	$\mathrm{M}+4$
		$0.01 \square \mathrm{c}$	$0.01 \square \mathrm{c}$	$\mathrm{M}+5$

This distribution can then be normalized by setting the relative abundance of the most abundant species at 100.0%. The isotopic distribution of the substrates was thus calculated using the following relative abundance for the deuterated species:
[2- $\left.{ }^{2} \mathrm{H}\right]$-L-prolyl-AnaD is composed of $3 \% D_{0}(M)$ and $97 \% D_{1}(M+1)$ species.
$\left[5,5-{ }^{2} \mathrm{H}_{2}\right]$-L-prolyl-AnaD is composed of $\left(0.09^{2}=0.0081\right) 0.81 \% \mathrm{D}_{0}(\mathrm{M}),(2 \square 0.09 \square 0.91=0.164)$ $16.4 \% \mathrm{D}_{1}(\mathrm{M}+1)$, and $\left(0.97^{2}=0.828\right) 82.8 \% \mathrm{D}_{2}(\mathrm{M}+2)$ species.
(5S)-[5- $\left.{ }^{2} \mathrm{H}\right]$-L-prolyl-AnaD is composed of $4 \% \mathrm{D}_{0}(\mathrm{M}), 14 \%$ of (5R)-derivative and 82% of (5S)derivative, both D_{1} species $(M+1)$.
[2,3,3,4,4,5,5- ${ }^{2} \mathrm{H}_{7}$]-L-prolyl-AnaD is composed of $\mathrm{D}_{0}(M)$ to $\mathrm{D}_{7}(M+7)$ species which relative abundances are given below. We only considered the D_{4} to D_{7} species for the calculation of the isotopic distribution of the substrate.

Species		Fraction	Relative abundance (\%)
D_{0}	M	0.03^{7}	-
D_{1}	$\mathrm{M}+1$	$7 \square 0.97 \square 0.03^{6}$	-
D_{2}	$\mathrm{M}+2$	$21 \square 0.97^{2} \square 0.03^{5}$	-
D_{3}	$\mathrm{M}+3$	$35 \square 0.97^{3} \square 0.03^{4}$	-
D_{4}	$\mathrm{M}+4$	$35 \square 0.97^{4} \square 0.03^{3}$	0.08%
D_{5}	$M+5$	$21 \square 0.97^{5} \square 0.03^{2}$	1.6%
D_{6}	$M+6$	$7 \square 0.97^{6} \square 0.03$	17.5%
D_{7}	$M+7$	0.97^{7}	80.8%

The isotopic distribution of the products was calculated by considering a complete loss of deuterium at position C 2 . Thus, the isotopic distribution for the ion ejected from the oxidized product of [2$\left.{ }^{2} \mathrm{H}\right]$-L-prolyl-AnaD is the natural isotopic distribution for the ion of $m / z 356$. For the oxidation of the substrates labeled on position C5, we considered two limiting cases. The first one involves a nonstereospecific loss of labeling by exchange of 50% of the deuterium with proton at both C5 positions of the P2C-AnaD intermediate. There are thus, in this case, two independent exchanges with a probability of 0.5 for each. In the other limiting case, we considered a complete loss of the labeling, either by complete exchange or by transformation of P2C-AnaD to P5C-AnaD. This loss could be stereospecific or non-stereospecific. The calculations are illustrated below.

For simulating the isotopic distribution for the ion ejected from the oxidized product of [2,3,3,4,4,5,5- ${ }^{2} \mathrm{H}_{7}$]-L-prolyl-AnaD, we considered a complete loss of deuterium at position C 2 and C5-pro- R, and a non-stereospecific loss at positions C 3 and C 4 . We only considered the D_{4} and D_{5} imine products because the other isotopologues $\left(D_{0}\right.$ to $\left.D_{3}\right)$ are negligible in quantity. Thus, the calculated relative abundance of these two imines are: $0.97^{5}=0.859(85.9 \%)$ for the D_{5} species, and $5 \square(0.97)^{4} \square 0.03=0.133(13.3 \%)$ for the D_{4} species. There are five D_{4} isotopomers depending on the position of the hydrogen. The isotopomer with one hydrogen on position C 5 will have the same exchange pattern than that of the D_{5} isotopomer. The four other D_{4} isotopomers will give the same pattern. Considering independent exchanges on four positions with a probability of 0.5 for each exchange, the relative abundances of the exchanged species are the followings:

Imines		Exchanged imines		
$\mathrm{D}_{5}(\mathrm{c})$	$\mathrm{D}_{4} \mathrm{C} 5-\mathrm{H}(\mathrm{b})$	$\mathrm{D}_{4} \mathrm{C} 5-\mathrm{D}(4 \square \mathrm{~b})$		
$\mathrm{c}=0.859$	$\mathrm{~b}=0.027$	$4 \square \mathrm{~b}=0.106$		
D_{5}	$1 / 16 \square \mathrm{c}$	0	0	$1 / 16 \square \mathrm{c}$
D_{4}	$4 / 16 \square \mathrm{c}$	$1 / 16 \square \mathrm{~b}$	$2 / 16 \square 4 \square \mathrm{~b}$	$4 / 16 \square \mathrm{c}+9 / 16 \square \mathrm{~b}$
D_{3}	$6 / 16 \square \mathrm{c}$	$4 / 16 \square \mathrm{~b}$	$6 / 16 \square 4 \square \mathrm{~b}$	$6 / 16 \square \mathrm{c}+28 / 16 \square \mathrm{~b}$
D_{2}	$4 / 16 \square \mathrm{c}$	$6 / 16 \square \mathrm{~b}$	$6 / 16 \square 4 \square \mathrm{~b}$	$4 / 16 \square \mathrm{c}+30 / 16 \square \mathrm{~b}$
D_{1}	$1 / 16 \square \mathrm{c}$	$4 / 16 \square \mathrm{~b}$	$2 / 16 \square 4 \square \mathrm{~b}$	$1 / 16 \square \mathrm{c}+12 / 16 \square \mathrm{~b}$
D_{0}	0	$1 / 16 \square \mathrm{~b}$	0	$7.4 \% \mathrm{D}_{3}$

Non-stereospecific loss of labeling at positions C3 and C4 in the oxidized product of [${ }^{2} \mathrm{H}_{7}$]-L-prolyl-AnaD, by considering independent exchanges, each with a probability of 0.5

For the D_{5} species $i=5$, and for the D_{4} species $i=4$

[^0]: +TOF MS: Exp 1, 17.488 min from Sample 1 (Ploux D70 002) of E3986BL.wiff
 $a=3.59600420361678910 \mathrm{e}-004$, to $=-2.78852333268951040 \mathrm{e}+001$ (lon Spray)
 $a=3.59600420361678910 \mathrm{e}-004$, to $=-2.78552333268951040 \mathrm{e}+001$ (lon Spray)

[^1]: +TOF MS: Exp $1,15.902$ min from Sample 1 (Ploux D7 001) of E3895BL.wiff
 $\mathrm{a}=3.59625722991799210 \mathrm{e}-004$, to $=-2.8274995319810753$.
 $a=3.59625722991799210 \mathrm{e}-004, \mathrm{t} 0=-2.82749953196107530 \mathrm{e}+001$ (lon Spray)

