Iminium ion cascade reaction in the total synthesis of (+)-Vincadifformine

Ganesh Pandey* and Prasanna Kumara C
Division of Organic Chemistry, National Chemical Laboratory, Pune-411008, India
E mail: gp.pandey@ ncl.res.in
\section*{Supporting information available}

I) Experimental Section
 II) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compounds

I) Experimental Section

General Procedures: All moisture-sensitive reactions were performed under an atmosphere of argon and glass wares were dried in an oven at $125{ }^{\circ} \mathrm{C}$ prior to use. Dry tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns and dried by distillation over sodium/benzophenone. Toluene, dimethylformamide (DMF) and dichloromethane (DCM) were distilled from calcium hydride and stored over $4 \AA$ molecular sieves. Pyridine and triethyl amine (TEA) were distilled over potassium hydroxide. Solvents used for chromatography were distilled at respective boiling points using known procedures.
All commercial reagents were obtained from Sigma-Aldrich Chemical Co and S. D. Fine Chemical Co. India. Reactions were monitored by thin layer chromatography (TLC, 0.25 mm E.Merck silica gel plates, $60 \mathrm{~F}_{254}$) and visualized by using UV light, ethanolic solution of phosphomolybdic acid and iodine. Column chromatography was performed on silica gel 60-120/ 100-200/ 230-400 mesh obtained from S. D. Fine Chemical Co. India or SRL India. Typical syringe and cannula techniques were used to transfer air and moisture sensitive reagents.

All melting points were uncorrected in degree Celsius and were recorded on a Thermonik melting point apparatus. IR spectra were recorded on a Perkin-Elmer infrared spectrometer model 599-B and model 1620 FT-IR. ${ }^{1}$ H NMR spectra were recorded on Bruker AC-200, Bruker AV-400 and Bruker DRX500 instruments using deuteriated solvent. Chemical shifts are reported in ppm. Proton coupling constants (J) are reported as absolute values in Hz and multiplicity (br, broadened; s , singlet; d, doublet; t , triplet; dd, doublet of doublet; dt, doublet of triplet; td, triplet of doublet; m, multiplet). ${ }^{13}$ C NMR spectra were recorded on Bruker AC-200, AV-400 and Bruker DRX500 instruments operating at $50 \mathrm{MHz}, 100 \mathrm{MHz}$ and 125 MHz respectively. ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to the central line of $\mathrm{CDCl}_{3}(\delta 77.0)$. Electro spray ionization (ESI) mass spectrometry (MS) experiments were performed on a Finnigan Mat-1020 spectrometer. High resolution mass spectrometric data were obtained using MSI Concept through direct insertion probe. Optical rotations were measured on a JASCO P-1030 polarimeter.

(S)- 2-Chloropyridin-3-yl) (2-(hydroxymethyl) pyrrolidin-1-yl)nicotinamide (II):

1
II
To a stirred solution of 2-chloronicotinic acid ($2.15 \mathrm{~g}, 13.667 \mathrm{mmol}$) and triethylamine (2.1 mL , $15.04 \mathrm{mmol})$ in anhydrous dichloromethane $(65 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$ was added ethyl chloroformate $(1.30 \mathrm{~mL}, 13.66 \mathrm{mmol})$. The resulting mixture was stirred at $-5^{\circ} \mathrm{C}$ for 45 minutes and (S) Prolinol ($1.52 \mathrm{~g}, 15.04 \mathrm{mmol}$) was added into it. The reaction mixture was allowed to warm to room temperature and stirred for additional 4 h , concentrated, purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, acetone-petroleumether, $\left.1: 5 \rightarrow 2: 5\right)$ to afford II $(3.22 \mathrm{~g}, 98 \%)$ as a colorless viscous oil which got crystallized from ethyl acetate/ petroleum ether as a colorless solid ($\mathrm{mp}=61-62{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, acetone-petroleum ether, 3:7); $[\boldsymbol{\alpha}]^{\mathbf{2 6}}{ }_{\mathbf{D}=-78.023\left(\mathrm{CHCl}_{3}, c\right.}$ $=0.85$);
IR (film) $v_{\max }=3397,2977,1622,1074 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{D}_{2} \mathrm{O}\right)=8.44(\mathrm{dd}, J=1.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=1.9,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{dd}, J=4.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 2 \mathrm{H})$, 2.21-2.15 (m, 1H), 1.94-1.89 (m, 1H), 1.85-1.81 (m, 1H), 1.75-1.68 (m, 1H);
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=166.7,150.1,146.4,136.4,132.9,122.7,65.3,61.1,49.1,28.1$ 24.2;

HR-MS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}: 240.06656$. Found: 240.06084 .

1,2,3,10,11,11a,(S)-Hexahydro-5H-pyrrolo[2,1-c]pyrido-[3,2-f][1,4]oxazepin-5-one(8):

A mixture of II ($1.2 \mathrm{~g}, 4.98 \mathrm{mmol}$) and sodium hydride ($0.131 \mathrm{~g}, 5.48 \mathrm{mmol}$) in 60 mL of anhydrous THF was refluxed under nitrogen for 16 h . Sodium chloride and unreacted NaH were removed by filtration, solvent evaporation and crystallization (ethyl acetate) afford analytically pure $\mathbf{8}$ as white crystals ($1.0 \mathrm{~g}, 99 \%$); $\mathrm{mp}=146-147{ }^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+230.96^{\circ}\left(\mathrm{CHCl}_{3, c}=1.55\right.$);

IR (film) $v_{\max }=3003,1624,1590,1463,1433,1383,1215 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=8.61(\mathrm{dd}, J=2.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=2.0,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.10 (dd, $J=4.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.6(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.63(\mathrm{~m}, 2 \mathrm{H})$, 2.33-2.19 (m, 1H), 2.09-1.81 (m, 2H), 1.76-1.57 (m, 1H);
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=162.5,160.4,151.2,143.5,118.1,115.8,73.2,57.2,48.1,29.2$, 23.3;

HR-MS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: 204.08988. Found: 204.08954.
(4aS, 9aS)-4a-Allyl-4a, 7, 8, 9, 9a, 10-hexahydropyrido [3, 2-f] pyrrolo [2, 1-c] [1, 4] oxazepin-5(2H)-one (9):

To a stirred solution of finely powdered $\mathbf{8}(0.25 \mathrm{~g}, 1.23 \mathrm{mmol})$ and tert-butyl alcohol $(0.09 \mathrm{~g}$, $0.11 \mathrm{~mL}, 1.23 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ and ammonia (30 mL) was added sodium ($0.104 \mathrm{~g}, 4.56$ mmol) in small pieces at $-78^{\circ} \mathrm{C}$. After 50 minutes, isoprene (few drops) was added until the blue coloration dissipated and a dark yellow solution resulted. Allyl bromide ($3.2 \mathrm{~mL}, 36.99 \mathrm{mmol}$) was added into the flask in one portion. The resulting solution was vigorously stirred at $-78{ }^{\circ} \mathrm{C}$
for 3 h , quenched with water (5 mL). The reaction mixture was allowed to warm to room temperature while ammonia got evaporated. Extracted with dichloromethane ($30 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by column chromatography (acetone-petroleum ether $2: 8 \rightarrow 3: 7$) afforded 9 as brown colored thick liquid ($0.139 \mathrm{~g}, 46 \%$ yield and $97.9 \% \mathrm{de}$). Diastereomeric ratio was determined by HPLC analysis (Atlantis RP-18 ($250 \times 4.6 \mathrm{~mm}$) column, acetonitrile-water ($40: 60$) as an eluent, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=224 \mathrm{~nm}, 25^{\circ} \mathrm{C}$). The retention times of major isomer and minor isomer were 5.33 and 6.19 minutes, respectively. This compound upon crystallization with dichloromethane - n-pentane gave single diastereomer as colorless crystals.
$\left(\mathrm{R}_{\mathrm{f}}=0.3\right.$ acetone: petroleum ether 3:7) $\mathrm{mp}=105.5-106.5^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+133.746^{\circ}(c=2.6$, CHCl_{3});
IR (film) $v_{\text {max }}=1688,1630,1412,1352 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=5.87-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.66-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.1-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.28$ (dd, $J=10.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.2-4.07(\mathrm{~m}, 3 \mathrm{H}), 3.9(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.6-1.51(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)=169.5,161.6132 .1,126.9,125.1,119.2,72.7,54.9,52.1,49.5$, 48.1, 42.0, 29.2, 22.3;

HR-MS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: 246.13683. Found: 246.13783 .

X-ray Crystal Structure Analysis For 9 (C14H18N2O2) (CCDC-783953)

Crystal Data: Single crystals of the compound were grown by slow evaporation of compound $\mathbf{9}$ in dichloromethane and n-pentane. Colourless crystal of approximate size $0.30 \times 0.26 \times 0.14$ mm, was used for data collection on Bruker SMART APEX CCD diffractometer using Mo K_{α} radiation with fine focus tube with 50 kV and 30 mA . Crystal to detector distance $6.05 \mathrm{~cm}, 512 \mathrm{x}$ 512 pixels / frame, hemisphere data acquisition. Total frames $=1271$, Oscillation $/$ frame -0.3°, exposure $/$ frame $=5.0 \mathrm{sec} /$ frame, maximum detector swing angle $=-30.0^{\circ}$, beam center $=$ (260.2, 252.5), in plane spot width $=1.24$, SAINT integration, θ range $=2.09$ to 25.0°, completeness to θ of 25.0° is 100.0%. SADABS correction applied, $\mathrm{C} 14 \mathrm{H} 18 \mathrm{~N} 2 \mathrm{O} 2, M=$ 246.30. Crystals belong to Tetragonal, space group $\mathrm{P}_{3} 2_{1} 2, a=11.0581(5), b=11.0581(5), c=$ 20.481(4) $\AA, V=2504.5(5) \AA^{3}, Z=8, \mathrm{D}_{\mathrm{c}}=1.306 \mathrm{~g} / \mathrm{cc}, \mu(\mathrm{MoK} \alpha)=0.088 \mathrm{~mm}^{-1}, T=150(2) \mathrm{K}$, 17820 reflections measured, 2210 unique $[\mathrm{I}>2 \sigma(\mathrm{I})]$, R value 0.0309 , $\mathrm{wR} 2=0.0815$. All the data were corrected for Lorentzian, polarisation and absorption effects. SHELX-97 (ShelxTL) ${ }^{\text {ref }}$ was used for structure solution and full matrix least squares refinement on F^{2}. Hydrogen atoms were
included in the refinement as per the riding model. X-ray analysis revealed the relative conformation of the molecule at C 4 a and C 9 a as S and S configuration.
The disordered atoms C13 and C14 have been refined with the split occupancies, C13 and C13 ${ }^{1}$ have 0.5 occupancies, while C 14 has 0.6 and $\mathrm{C} 14^{1}$ has 0.4 occupancies respectively.

Figure 1: ORTEP diagram of 9. Ellipsoids are drawn at 50% probability.
(S)-Methyl 3-allyl-2-oxo-1, 2, 3, 6-tetrahydropyridine-3-carboxylate (11):

Method A: A solution of $9(0.39 \mathrm{~g}, 1.59 \mathrm{mmol})$ in methanol $(8 \mathrm{~mL})$ and 80% sulfuric acid $(1 \mathrm{~mL})$ was stirred at room temperature for 75 h . The methanol was evaporated under reduced pressure and the residue was basified with the saturated sodium bicarbonate solution, stirred for ten minutes. The mixture was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate:petroleum ether, $\left.2: 3 \rightarrow 3: 2\right)$ afforded $\mathbf{1 1}(0.14 \mathrm{~g})$ as a white solid (45% yield and 19% enantiomeric excess). Enantiomeric excess was determined by HPLC analysis \{Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$) column, isopropanol-petroleum ether (10:90) as an eluent $\}, 0.5 \mathrm{~mL} / \mathrm{min}(265 \mathrm{psi}), \lambda=220 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, the retention times of $(+)$ - isomer and (-) isomer being 27.36 and 52.35 minutes, respectively.

Method B: To a stirred solution of $9(0.5 \mathrm{~g}, 2.03 \mathrm{mmol})$ in THF (8 mL) was added glacial acetic acid (1 mL) and water $(1 \mathrm{~mL})$ at room temperature. After stirring for 20 h , it was neutralized with
saturated NaHCO_{3} solution, extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (acetone-petroleum ether $1: 1$) to afford pure $\mathbf{1 2}(0.477 \mathrm{~g}, 89 \%) . \mathrm{mp}=$ $141-142{ }^{\circ} \mathrm{C} ;\left(\mathrm{R}_{\mathrm{f}}=0.34\right.$ acetone: petroleum ether $\left.7: 3\right) ;[\boldsymbol{\alpha}]^{\mathbf{2 6}}{ }_{\mathbf{D}}=+28.82^{\circ}\left(\mathrm{CHCl}_{3, c}=3.254\right)$;

IR (film) $v_{\max }=3401,1679,1658,1412 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}=7.13(\mathrm{bs}, 1 \mathrm{H}), 5.96(\mathrm{td}, J=2.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.58(\mathrm{~m}, 2 \mathrm{H})$, 5.12-5.01 (m, 2H), $4.52(\mathrm{bs}, 1 \mathrm{H}), 3.96(\mathrm{bs}, 2 \mathrm{H}), 3.59-3.5(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.9(\mathrm{dd}$, $J=7.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.6(\mathrm{dd}, J=7,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}=170.3,169.9,132.4,125.4,122.2,119.0,65.8,61.7,54.4,46.7$, 43.6, 41.9, 27.1, 24.5;

HR-MS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: 264.14739 . Found: 264.13514.

To a stirred solution of $\mathbf{1 2}(0.21 \mathrm{~g}, 0.8 \mathrm{mmol})$ in anhydrous methanol (20 mL) was added copper (II) triflate $(0.29 \mathrm{~g}, 0.8 \mathrm{mmol})$ at room temperature, stirred for 48 h , concentrated and basified with saturated sodium bicarbonate solution. The aqueous layer was extracted with dichloromethane, dried over sodium sulfate, concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: petroleum ether, $2: 3 \rightarrow 3: 2$) to afford 11 as a white solid $(0.136 \mathrm{~g}, 87 \%$ yield as single enantiomer). Enantiomeric excess was determined by HPLC analysis \{(Chiralcel OD-H $(250 \times 4.6 \mathrm{~mm})$ column, isopropanol- petroleum ether (10:90) as an eluent, $0.5 \mathrm{~mL} / \mathrm{min}(265 \mathrm{psi}), \lambda=$ $220 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, the retention times of (+) - isomer being at 27.89 minutes $\} ; \mathrm{mp}=88-91{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate:petroleum ether 4:1); $[\boldsymbol{\alpha}]^{\mathbf{2 3}}{ }_{\mathbf{D}}=+82.812\left(\mathrm{CHCl}_{3,} c=1.1\right)$;

IR (film) $v_{\max }=3226,3078,2952,1731,1660,1236,923 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=6.67(\mathrm{bs}, 1 \mathrm{H}), 6.0-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.76-5.55(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.04(\mathrm{~m}$, $2 \mathrm{H}), 4.12-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=7.3,13.7 \mathrm{~Hz}), 2.61(\mathrm{dd}, J=7.2,13.7 \mathrm{~Hz}), 2.0$ (bs, 1H);

[^0]
(S)-Methyl-2-oxo-3-(2-oxoethyl)-1, 2, 3, 6-tetrahydropyridine-3-carboxylate (11a):

To a solution of $11(0.15 \mathrm{~g}, 0.799 \mathrm{mmol})$ in dioxane-water (3:1, 8 mL) was added 2,6-lutidine ($0.27 \mathrm{~mL}, 2.397 \mathrm{mmol}$), OsO_{4} (2.14 \% in 2-methyl-2-propanol, $4 \mathrm{mg}, 0.0159 \mathrm{mmol}$), and NaIO_{4} $(0.683 \mathrm{~g}, 3.19 \mathrm{mmol})$.The reaction was stirred at $25^{\circ} \mathrm{C}$ for 4 h and diluted with water (20 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purification by column chromatography (SiO_{2}, ethyl acetate- petroleum ether, $8: 2 \rightarrow 10: 0$) to obtain $11 \mathbf{a}(0.11 \mathrm{~g}, 70 \%)$ as a colorless liquid. $\mathrm{R}_{\mathrm{f}}=0.3$ $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate-petroleum ether 6:4); $[\boldsymbol{\alpha}]^{\mathbf{2 3}}{ }_{\mathbf{D}}=+3.88\left(c=1.15, \mathrm{CHCl}_{3}\right)$;

IR (neat) $v_{\max }=3319,2955,1726,1682,1660,1487,1334,1235 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=9.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{bs}, 1 \mathrm{H}), 6.01-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.68$ (dt, $J=2.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=$ $2.0,17.7 \mathrm{~Hz}$);
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=198.7,170.1,168.4,124.6,124.0,53.14,51.2,48.1,43.29$;
MS (ESI) $(\mathrm{m} / \mathrm{z})=220.100(\mathrm{M}+\mathrm{Na})^{+}$.
(S)-Methyl 3-((1,3-dithian-2-yl)-2-oxo-1,2,3,6-tetrahydropyridine-3-carboxylate (11b):

To a solution containing 11a $(0.21 \mathrm{~g}, 1.085 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ were added 1,3-propanedithiol $(0.152 \mathrm{~g}, 0.14 \mathrm{~mL}, 1.41 \mathrm{mmol})$ and boron trifluoride etherate $(1.23 \mathrm{~g}, 1.1 \mathrm{~mL}$, $8.68 \mathrm{mmol})$. The mixture was refluxed for 12 h , cooled to room temperature and quenched with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and dried over sodium sulfate, concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$,
ethyl acetate-petroleum ether, $6: 4 \rightarrow 7: 3$) to afford $11 \mathrm{~b}(0.251 \mathrm{~g}, 81 \%)$ as a gummy compound. $\mathrm{R}_{\mathrm{f}}=0.45\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right) ;[\boldsymbol{\alpha}]^{\mathbf{2 6}}{ }_{\mathrm{D}}=+102.42^{\circ}\left(c=2.75, \mathrm{CHCl}_{3}\right)$;
IR (neat) $v_{\max }=3213,2902,1738,1682,1662,1488,1433,1229 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=6.87(\mathrm{bs}, 1 \mathrm{H}), 6.02-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{dt}, J=10.0,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{dd} J=9.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=14.6,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=14.56,5.40 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H})$, 1.94-1.84 (m, 1H), $1.75(\mathrm{~s}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=170.5,168.7,124.2,123.8,53.2,52.8,43.3,41.7,38.9,28.5$, 28.1, 25.1;

HR-MS(ESI): calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}_{2}$: 287.06498. Found: 287.05690.

(S)- Methyl 3-ethyl-2-oxopiperidine-3-carboxylate (14):

To a solution of $\mathbf{1 1 b}(0.423 \mathrm{~g}, 1.47 \mathrm{mmol})$ in absolute ethanol $(65 \mathrm{~mL})$ was added Raney-Ni (W$2,2 \mathrm{~g}$, prewashed with absolute ethanol) followed by refluxing under a hydrogen atmosphere (1 atm) for 7 h . The reaction mixture was filtrated through celite and the filtrate was concentrated under reduced pressure, purified by column chromatography (silica gel, eluting with ethyl acetate) to obtain $14(0.25 \mathrm{~g}, 94 \%)$ as a colorless liquid. $\mathrm{R}_{\mathrm{f}}=0.33\left(\mathrm{SiO}_{2}\right.$, ethyl acetate $)$;
$[\boldsymbol{\alpha}]^{\mathbf{2 7}}{ }_{\mathrm{D}}=-48.3314\left(\mathrm{CHCl}_{3,} c=2.45\right)$;
IR (neat) $v_{\max }=3300,2953,2880,1732,1666,1491,1449,1247,1199 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=6.0(\mathrm{bs}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.2-2.16(1 \mathrm{H}, \mathrm{m})$, 2.07-1.99 (m, 1H), 1.97-1.92 (m, 1H), 1.9-1.78 (m, 3H), 1.66(s, 1H), $0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=173.4,171.1,53.9,52.3,42.1,28.8,28.3,19.4,8.8$;
HR-MS (EI): calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$: 185.10519. Found: 185.10635.

(R)-3-Ethyl-3-(hydroxymethyl)piperidin-2-one (14a):

To a suspension of $\mathrm{NaBH}_{4}(0.18 \mathrm{~g}, 4.92 \mathrm{mmol})$ and cerium chloride heptahydrate $(0.252 \mathrm{~g}, 0.677$ $\mathrm{mmol})$ in ethanol (4 mL) was added drop wise the solution of $\mathbf{1 4}(0.08 \mathrm{~g}, 0.464 \mathrm{mmol})$ in ethanol $(3 \mathrm{~mL})$ for 1 h . The reaction mixture was stirred for 2 days at room temperature and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with dichloromethane $(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$ acetone: petroleum ether $\left.1: 1\right)$ to afford $\mathbf{1 4 a}(0.06 \mathrm{~g}, 87 \%)$ as colorless sticky liquid. $\mathrm{R}_{\mathrm{f}}=0.23\left(\mathrm{SiO}_{2}\right.$, acetone-petroleum ether $\left.1: 1\right) ;[\boldsymbol{\alpha}]^{\mathbf{2 7}}{ }_{\mathbf{D}}=+13.4667\left(\mathrm{CHCl}_{3}, c=\right.$ 1.05);

IR (neat) $v_{\max }=3297,2940,2875,1644,1492,1054 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=6.38(\mathrm{bs}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.47(\mathrm{~m}, 2 \mathrm{H})$, 3.29-3.25 (m, 2H), 1.9-1.68 (m, 5H), 1.49-1.43 (m, 1H), $0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C ~ N M R ~}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=178.2,67.2,45.1,41.9,26.6,26.4,19.1,7.7 ;$
HR-MS (EI): calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}$: 157.11028. Found: 157.11074 .

(R)- (3-ethyl-2-oxopiperidin-3-yl)methyl 4-methylbenzenesulfonate (15):

p-Toluenesulfonyl chloride $(0.11 \mathrm{~g}, 0.601 \mathrm{mmol})$ was added in small portions to a stirred and ice-cooled solution of $\mathbf{1 4 a}(0.06 \mathrm{~g}, 0.4 \mathrm{mmol})$ in anhydrous pyridine (4 mL). The reaction mixture was stirred for 48 h at ambient temperature and poured into ice water. The aqueous layer was extracted with dichloromethane, washed with saturated NaHCO_{3} solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}, 6: 4 \rightarrow 10: 0\right.$ ethyl acetatepetroleum ether) to afford 15 as white solid ($0.138 \mathrm{~g}, 84 \%$), which got crystallized from ethyl acetate-petroleum ether as colorless crystals. $\mathrm{mp}=166-168{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.45\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right)$; $[\boldsymbol{\alpha}]^{\mathbf{2 3}}{ }_{\mathbf{D}}=-26.7586\left(\mathrm{CHCl}_{3}, \boldsymbol{c}=1.45\right)$; IR (neat) $v_{\max }=3020,1661,1359,1215,1176 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{bs}, 1 \mathrm{H})$, $4.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.3-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 1 \mathrm{H}) 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=173.2,144.7,132.4,129.7,127.8,75.0,45.3,42.3,28.2,27.2$, 21.5, 19.6, 8.3;

HR-MS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$: 311.11913. Found: 311.11887.

(R)-tert-Butyl 3-ethyl-2-oxo-3-(tosyloxymethyl)piperidine-1-carboxylate (15a):

To a solution of $15(0.64 \mathrm{~g}, 2.07 \mathrm{mmol})$ in dry dichloromethane (15 mL) was added triethylamine $(0.72 \mathrm{~mL}, 5.17 \mathrm{mmol})$ and DMAP $(0.025 \mathrm{~g}, 0.2 \mathrm{mmol})$. To this stirred mixture was added drop wise di-tertbutyl dicarbonate $(0.7 \mathrm{~mL}, 3.1 \mathrm{mmol})$ over a period of 15 min and the mixture was stirred at ambient temperature for 12 h . The reaction mixture was concentrated under reduced pressure, purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate-petroleum ether 2:8) to furnish 15 a as a colorless liquid $(0.81 \mathrm{~g}, 95 \%) . \mathrm{R}_{\mathrm{f}}=0.27$ (2:8 ethyl acetate:petroleum ether); $[\boldsymbol{\alpha}]^{\mathbf{2 6}}{ }_{\mathbf{D}}=-62.8914\left(\mathrm{CHCl}_{3} c=1.05\right)$;

IR (neat) $v_{\max }=2976,1765,1717,1367,1177,1150 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=7.75(\mathrm{~d}, J=8.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.03 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=$ $9.29 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.28 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.43$ (s, 3H), 1.98-1.89 (m, 1H), 1.88-1.75 (m, 3H), 1.64-1.54 (m, 2H), $1.48(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{t}, J=7.53 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=173.2,152.8,144.8,132.3,129.8,127.8,82.7,74.2,48.3,46.9$, 28.7, 28.5, 27.8, 21.5, 19.7, 8.1;

MS (ESI): $412.1523\left(\mathrm{M}^{+}+\mathrm{H}\right), 434.1089\left(\mathrm{M}^{+}+\mathrm{Na}\right), 450.0987\left(\mathrm{M}^{+}+\mathrm{K}\right)$;
HR-MS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}: 411.17156$. Found: 311.11977 (-Boc).

(3R)-tert-Butyl 3-ethyl-2-hydroxy-3-(tosyloxymethyl)piperidine-1-carboxylate(15b):

To a stirred solution of $\mathbf{1 5 a}(0.137 \mathrm{~g}, 0.33 \mathrm{mmol})$ in anhydrous THF $(4 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added a solution of DIBAL-H ($20 \mathrm{wt} \%$ solution in toluene, $0.8 \mathrm{~mL}, 0.99 \mathrm{mmol}$). After 4 h , the reaction was quenched by successive addition of saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(3.5 \mathrm{~mL})$ and an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \% \mathrm{wt} / \mathrm{v}, 2.5 \mathrm{~mL})$. The mixture was extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate-petroleum ether 2.5:7.5) to afford $\mathbf{1 5 b}$ as colorless gum $(0.133 \mathrm{~g}, 97 \%) . \mathrm{R}_{\mathrm{f}}=$ 0.37, (2.5:7.5 ethyl acetate-petroleum ether); $[\boldsymbol{\alpha}]^{\mathbf{2 6}}{ }_{\mathrm{D}}=-5.3059\left(\mathrm{CHCl}_{3} c=1.85\right)$;

IR (neat) $v_{\max }=3414,2972,1673,1366,1176 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=7.77(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.3(\mathrm{bs}, 1 \mathrm{H}), 4.01-$
$3.73(\mathrm{~m}, 3 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 15 \mathrm{H}), 0.66(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=155.5,144.7,132.4,129.7,127.8,80.5,75.471 .8,68.5,40.4$, 28.2, 26.2, 25.3, 21.5, 20.0, 6.4;

MS (ESI): $436.0946\left(\mathrm{M}^{+}+\mathrm{Na}\right), 452.0846\left(\mathrm{M}^{+}+\mathrm{K}\right)$.

(3-Ethyl-3, 4, 5, 6-tetrahydropyridin-3-yl) methyl 4-methylbenzenesulfonate (4):

To a stirred solution of $\mathbf{1 5 b}(0.11 \mathrm{~g}, 0.278 \mathrm{mmol})$ in 5 mL of dry dichloromethane was added trifluoroacetic acid ($0.2 \mathrm{~mL}, 2.78 \mathrm{mmol}$) drop by drop, stirred at ambient temperature for 4 h . Concentrated, neutralized with saturated aqueous sodium hydrogen carbonate and extracted with dichloromethane. The organic layer was separated, dried over sodium sulfate, concentrated under
reduced pressure and purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate) to afford pure imine 4 as a colorless liquid ($0.07 \mathrm{~g}, 90 \%$ yield, single enantiomer). Enantiomeric excess was determined by HPLC analysis and compared with the racemic imine (Chiralcel OJ-H ($250 \times 4.6 \mathrm{~mm}$) column, Isopropanol-petroleum ether ($15: 85$) as an eluent), $0.7 \mathrm{~mL} / \mathrm{min}$ (33 Kgf), $\lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, the retention times of $(-)-$ isomer and (+)-isomer being 21.408 and 23.867 minutes, respectively. $\left(\mathrm{R}_{\mathrm{f}}: 0.4\right.$, ethyl acetate $) ;[\alpha]^{28.3}{ }_{\mathrm{D}}=-42.2220\left(\mathrm{CHCl}_{3} c=2.0\right)$;
IR (neat) $v_{\max }=2941,1654,1363,1176 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{bs}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.85,3.81$ (2 sets of doublet, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53-3.42 (m, 2H), $2.44(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 6 \mathrm{H})$, $0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=164.7,145.0,132.3,129.8,127.8,127.8,72.9,49.1,39.9,27.2$, 25.3, 21.6, 18.7, 7.6;

HR-MS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$: 295.12421 . Found: 295.11549 .

Methyl 2-(3-(2-chloroethyl)-1H-indol-2-yl) acetate (5):

To a stirred solution of 3-(2-chloroethyl)-1H-indole ($0.8 \mathrm{~g}, 4.46 \mathrm{mmol}$) and triethyl amine (0.74 $\mathrm{mL}, 5.35 \mathrm{mmol})$ in anhydrous THF (20 mL) was added drop wise t - $\mathrm{BuOCl}(0.63 \mathrm{~mL}, 5.35$ $\mathrm{mmol})$ dissolved in dry THF (2 mL) over a period of 10 minutes at- $78^{\circ} \mathrm{C}$. After 40 minutes, the silylenol ether ($1.9 \mathrm{~mL}, 8.92 \mathrm{mmol}$) was added followed by $\mathrm{BF}_{3}: \mathrm{OEt}_{2}(1.1 \mathrm{~mL}, 8.92 \mathrm{mmol})$. The solution was warmed to ambient temperature over 6 h and stirred at the same temperature for 6 h , quenched with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, extracted with dichloromethane, dried over sodium sulfate and concentrated under reduced pressure. The crude residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate-petroleum ether, $\left.1.5: 8.5\right)$ to obtain $5(0.685 \mathrm{~g}, 61 \%)$ as a thick liquid. This compound upon crystallization with cyclohexane-ethyl acetate gave colorless crystalline solid; $\mathrm{mp}=59-60{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.42\left(\mathrm{SiO}_{2}\right.$, ethyl acetate-petroleum ether 2.5: 7.5, Iodine/PMA);
$\mathbf{I R}$ (neat) $=3457,3019,1735,1438,1460,1216 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=8.65($ brs, 1 H$), 7.53-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.08$ $(\mathrm{m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.2(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=170.8,135.5,127.7,127.4,122.0,119.5,117.9,110.9,109.6$, 52.3, 44.5, 31.6, 27.8;

HR-MS (EI):calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}_{2}$:251.07131. Found: 251.05374

(+)-Vincadifformine (1):

The stirred solution of methyl-2-(3-(2-chloroethyl)-1H-indol-2-yl)acetate (5) (0.101g, 0.402 mmol) and potassium iodide ($0.467 \mathrm{~g}, 2.81 \mathrm{mmol}$) in 4 mL of anhydrous DMF was degassed three to four times in presence of argon and heated at $90^{\circ} \mathrm{C}$ for 3 h , cooled to room temperature. Imine (-)-4 ($0.119 \mathrm{~g}, 0.402 \mathrm{mmol}$) dissolved in 2 mL anhydrous DMF was added to the flask. After heating at $135{ }^{\circ} \mathrm{C}$ to $140{ }^{\circ} \mathrm{C}$ for 3 h , it was cooled to room temperature, diluted with dichloromethane, quenched with ice water. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, purified by column chromatography (SiO_{2}, ethyl acetate- petroleum ether 15:85) to afford vincadifformine (1) ($0.04 \mathrm{~g}, 35 \%$, $>99 \%$ ee). Enantiomeric excess was determined by HPLC analysis by comparing with the racemic $\mathbf{1}$ (Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$) column, ethanol:petroleum ether:TFA (15:85:0.1) as an eluent), $0.5 \mathrm{~mL} / \mathrm{min}(26 \mathrm{Kgf}), \lambda=220 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, the retention times of $(+)$ - isomer and (-)-isomer being 14.942 and 18.983 minutes, respectively. $\mathrm{R}_{\mathrm{f}}: 0.37$ (1.5:8.5 ethyl acetate: petroleum ether); $[\boldsymbol{\alpha}]^{28}{ }_{\mathbf{D}}=+550.760(\mathrm{EtOH}, c=0.2)$;
IR (neat) $=3368,2934,2774,1674,1608,1463,908,733 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=8.89(\mathrm{bs}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{dt}, J=7.3,0.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{br} \mathrm{d}, J=9.3 \mathrm{~Hz}$ $1 \mathrm{H}), 2.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 2.43-$ $2.35(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=15.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{dd}, J=$ $13.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.62(\mathrm{~m}, 1 \mathrm{H}), 0.56(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=169.3,167.9,143.4,138.1,127.5,121.1,120.6,109.4,92.7$, $72.8,55.6,51.8,51.1,50.8,45.4,38.3,33.0,29.4,25.6,22.3,7.2$;

HR-MS (EI): calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$: 338.19943. Found: 338.20066.

Attempts towards the isolation of Spiro intermediate (7):

The stirred solution of methyl-2-(3-(2-chloroethyl)-1H-indol-2-yl)acetate (5, $0.07 \mathrm{~g}, 0.287$ $\mathrm{mmol})$, imine (-)-4 ($0.08 \mathrm{~g}, 0.287 \mathrm{mmol}$) and sodium iodide ($0.258 \mathrm{~g}, 1.72 \mathrm{mmol}$) in 6 mL of anhydrous acetonitrile was degassed three to four times in presence of argon and refluxed for 12 h , cooled to room temperature and quenched the reaction with ice water. The aqueous layer was extracted with dichloromethane, dried over sodium sulfate and concentrated.

The isolation of the diastereomeric mixture of 7 through column chromatography by using silicagel or alumina was not successful due to their poor stability.
HPLC-LCMS analysis indicates the formation of (+)-vincadifformine (1), diastereomeric mixture ($89: 11$) of (7) along with the indole fragment. The diastereomeric ratio of 7 was determined by HPLC analysis using Kromasil RP-18 ($150 \times 4.6 \mathrm{~mm}$) column, methanol:acetonitrile:triethyl ammonium acetate($0.1 \mathrm{M} . \mathrm{pH}-7$) (40:40:20) and (35:45:20) as an eluent, $1.0 \mathrm{~mL} / \mathrm{min}(1140 \mathrm{psi}), \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, the retention time of diastereomers being at 8.31 and 9.19 minutes.

Diastereomeric mixture of $\mathbf{7}$ was found converting to $\mathbf{1}$ by heating at $145^{\circ} \mathrm{C}$ in DMF for 3 h , determined by HPLC analysis using Kromasil RP-18 ($150 \times 4.6 \mathrm{~mm}$) column, methanol:water ($85: 15$) as an eluent, $1.0 \mathrm{~mL} / \mathrm{min}$ (1260 psi), $\lambda=254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$, the retention time of vincadifformine and spiro compound 7 being at 7.37 and 8.27 minutes, respectively.

HPLC and Mass spectrometric analysis of spiro intermediate 7 and Vincadifformine 1:

Column : Kromasil RP-18 ($150 \times 4.6 \mathrm{~mm}$)
Mobile Phase : MeOH: $\mathrm{CH}_{3} \mathrm{CN}: T E A A(\mathrm{pH}-7)(35: 45: 20)$
Wavelength: 254nm
Flow rate : $1.0 \mathrm{~mL} / \mathrm{min}$ (1140 psi)
Sample conc : $1 \mathrm{mg} / 1 \mathrm{~mL}$ (inj vol-10 $\mu \mathrm{L}$)

Chrom Type: HPLC Channel : 1

RT: $6.00-1200$

Conversion of Spiro 7 to Vincadifformine (1): HPLC and Mass spectrometric analysis of aliquots at different interval of times
Chrom Type: HPLC Channel : 1

Chrom Type: HPLC Channel : 1

Chrom Type: HPLC Channel : 1


```
Group Leader :-Dr.Ganesh Pandey
COlumn :Kromasil RP-18(150 X 4.6mm)
M.P. :A)MEOH:H2O(85:15)
Flow Rate :-1.0ml/min (1260psi)
Sample conc :x mg/0.5 ml
                            Inj vol-10ul
WAVELENGTH :254nm
```


Methyl 2-(spiro[cyclopropane-1,3'-indoline]-2'-ylidene)acetate:

16
$\mathrm{R}_{\mathrm{f}}: 0.4$ (1.5:8.5 ethyl acetate: petroleum ether); $\mathbf{I R}($ neat $)=3403,2925,1655,1456,743 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=10.0(\mathrm{brs}, 1 \mathrm{H}), 7.2-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.7-1.63(\mathrm{~m}, 2 \mathrm{H})$,
1.45-1.39(m, 2H);
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=170.4,167.7,143.5,132.7,126.9,121.0,118.0,109.0,74.2,50.4,23.0$:
MS (ESI): 216.09($\left.\mathrm{M}^{+}+\mathrm{H}\right)$
II) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra:

(4aS, 9aS)- 4a-Allyl-4a, 7, 8, 9a, 10-hexahydropyrido[3, 2-f] pyrrolo[2,1-c][1, 4] oxazepin-5(2H)-one: (9)
Chrom Type: HPLC Channel : 1

No.	RT	Height	Area	Area \%
1	5.33	392937	6709760	98.938
2	6.19	6155	72044	1.062
		399092	6781804	100.000

HPLC conditions: Column : Atlantis RP-18(250×4.6mm)
Mobile Phase : Acetonitrile : Water (40:60)
Wavelength : 224nm
Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}(1200 \mathrm{psi})$
Sample conc : 2mg/1mL (Inj Vol-5 $\boldsymbol{\mu l}$)

Detector A-1
(220nm) Pk \# Retention Time

Area Area \% Height Height Percent

1	27.367	6676591	45.529	130267	59.72
2	52.350	7987913	54.471	87868	40.28

Column	$:-$ Chiralcel OD-H(250x4.6mm)
M.P.	$:$ IPA:P.E. $(10: 90)$
Wavelength	$:-220 \mathrm{~nm}$
Flow	$:-0.5 \mathrm{ml} / \mathrm{min}(265 \mathrm{psi})$
conc.	$:-2 \mathrm{mg} / 2 \mathrm{ml}$
Injection vol	$: \quad$ Inj Vol- 5 ul

(S)-Ester (11) (19\% ee)

Detector A-1
(220nm)

	Pk\#	Retention Time	Area	Area \%	Height	

Column	$:-$ Chiralcel OD- H(250x4.6mm)
M.P.	$:$ IPA:P.E.(10:90)
Wavelength	$:-220 \mathrm{~nm}$
Flow	$:-0.5 \mathrm{ml} / \mathrm{min}(265 \mathrm{psi})$
conc.	$:-2 \mathrm{mg} / 2 \mathrm{ml}$
Injection vol	$:$ Inj Vol- 5 ul

(S)-Ester (11) (>99\% ee)

[^1]

Detector A-1 ($\mathbf{2 5 4 n m}$)
Pk\# Retention Time
Area
Area \%

| 1 | 21.408 | 1674827 | 50.688 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 23.867 | 1629348 | 49.312 |

Column
 :Chiralcel OJ-H- ($4.6 \times 250 \mathrm{~mm}$)

Mobile Phase : IPA:Pet ether (15:85)
Wavelength
: 254 nm
Flow Rate $\quad: 0.7 \mathrm{ml} / \mathrm{min} 33 \mathrm{kgf}$
Sample Con $\quad: 2.3 \mathrm{mg} / 0.5 \mathrm{ml}$ Inj vol-10ul

(Racemic)

Detector A-1 (254nm)
Pk \# Retention Time
Area
Area \%

Column	$:$ Chiralcel OJ-H- $(4.6 \times 250 \mathrm{~mm})$
Mobile Phase $:$	IPA:Pet ether (15:85)
Wavelength	$: 254 \mathrm{~nm}$
Flow Rate	$: 0.7 \mathrm{ml} / \mathrm{min} 33 \mathrm{kgf}$
Sample Con	$: 2.3 \mathrm{mg} / 0.5 \mathrm{ml}$ Inj vol-10ul

Chloroform-d										
	N	$\stackrel{\text { d }}{\substack{\text { ¢ } \\ \text { ¢ }}}$		$\begin{aligned} & \text { Ǹ } \\ & \stackrel{\circ}{8} \\ & \stackrel{\circ}{1} \end{aligned}$	$\begin{aligned} & \stackrel{\underset{\sim}{\mathrm{O}}}{\stackrel{\circ}{\circ}} \end{aligned}$			$\stackrel{\sim}{\infty}$		$\stackrel{N}{\sim}$

${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Detector A-1 (220nm)
Pk \# Retention Time
Area
Area \%
$1 \quad 14.942$
14.942
18.983

6337602
48.540

6718724
51.460

Column
: Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$)
Mobile Phase :Ethanol:Petether:TFA (15:85:0.1)
Wavelength : 220nm
Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}(26 \mathrm{kgf})$
Sample Con : $1 \mathrm{mg} / 0.5 \mathrm{ml}$ Inj vol-5ul

(\pm)- Vincadifformin.

Detector A-1 (220nm)
Pk \#
Retention Time
Area
Area \%
$1 \quad 14.808 \quad 12586161 \quad 100.000$

Column Mobile Phase
: Chiralcel OD-H (250x4.6mm)
Mobile Phase :Ethanol:Petether:TFA (15:85:0.1)
Wavelength
Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}(26 \mathrm{kgf})$
Sample Con $\quad: 1 \mathrm{mg} / 0.5 \mathrm{ml}$ Inj vol-5ul

(t) - Vincadifformine.

[^0]: ${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)=171.0,168.8,132.4,125.5,123.1,119.1,54.1,52.8,43.4,39.5 ;$
 HR-MS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$: 195.08954. Found: 195.08821.

[^1]:

