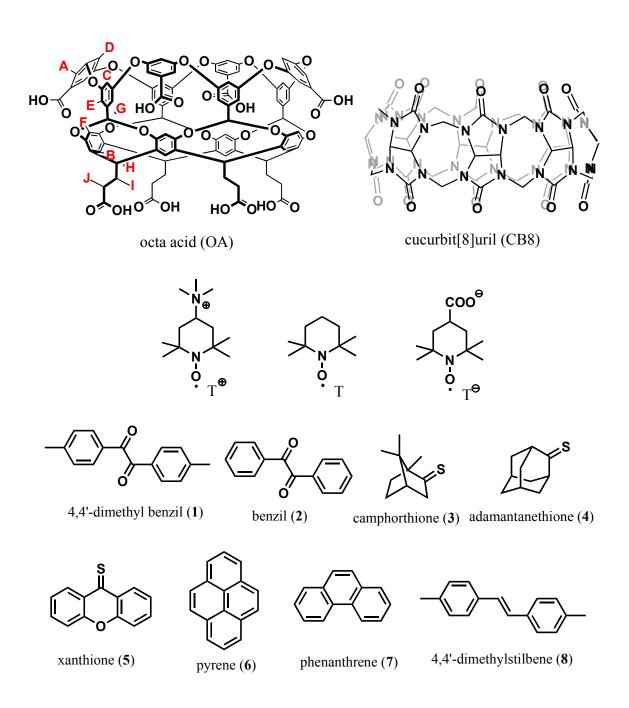
Supporting Information

Interaction Between Encapsulated Excited Organic Molecules and Free Nitroxides: Communication Across a Molecular Wall

Mintu Porel,^a Steffen Jockusch,^b M. Francesca Ottaviani,^c N. J. Turro^b and V. Ramamurthy^a


^aDepartment of Chemistry, University of Miami, Coral Gables, FL, 33124, USA

^b Department of Chemistry, Columbia University, New York, NY 10027, USA

^c Department of Earth, Life and Environmental Sciences (DiSteVA) University of Urbino, Campus ex-Sogesta, Loc. Crocicchia, 61029 Urbino, Italy

	Content	Page #
Scheme S1	Structure of hosts and guests	S3
Figure S1	¹ H NMR titration of 1 @OA ₂ with T^{\oplus}	S4
Figure S2	EPR spectra of T^{\oplus} in water, 1 @OA ₂ and complexed with CB8 and CA8	S5
Figure S3	¹ H NMR spectra of 1@OA ₂ in presence of T^{\oplus} and CA8	S6
Figure S4	¹ H NMR spectra of 1@OA ₂ in presence of T^{\oplus} and γ -CD	S6
Figure S5	EPR spectra of T^{\oplus} in water, CA8, β -CD and γ -CD	S7
Figure S6	EPR spectra of T ^{\circ} in presence of 1 @OA ₂ and β -CD and γ -CD	S7
Figure S7	¹ H NMR spectra of OA and three dibenzyl ketones complexed with OA	S8
Figure S8	Steady state phosphorescence titration of $1@OA_2$ with T^{\oplus}	S9
Figure S9	Time resolved phosphorescence titration of $1@OA_2$ with T^{\oplus}	S9
Figure S10	Steady state phosphorescence titration of $2@OA_2$ with T ^{\oplus}	S10
Figure S11	Time resolved phosphorescence titration of $2@OA_2$ with T ^{\oplus}	S10
Figure S12	Steady state phosphorescence titration of 3_2 (\mathbf{OA}_2 with \mathbf{T}^{\oplus}	S11
Figure S13	Time resolved phosphorescence titration of 3_2 (\mathbf{OA}_2 with \mathbf{T}^{\oplus}	S11
Figure S14	Steady state phosphorescence titration of 4_2 @OA ₂ with T	S12

Figure S15	Time resolved phosphorescence titration of 4_2 @OA ₂ with T ^{\oplus}	S12		
Figure S16	Steady state phosphorescence titration of $5@OA_2$ with T^{\oplus}	S13		
Figure S17	Steady state fluorescence titration of $6@OA_2$ with T^{\oplus}			
Figure S18	Time resolved triplet-triplet absorption titration of $6@OA_2$ with T^{\oplus}			
Figure S19	Steady state fluorescence titration of $7@OA_2$ with T^{\oplus}	S14		
Figure S20	Steady state fluorescence titration of $8@OA_2$ with T^{\oplus}			
Figure S21	Steady state phosphorescence titration of 1@OA ₂ with T			
Figure S22	Time resolved phosphorescence titration of 1 @OA ₂ with T			
Figure S23	Steady state phosphorescence titration of 2@OA ₂ with T			
Figure S24	Time resolved phosphorescence titration of 2@OA ₂ with T			
Figure S25	Steady state phosphorescence titration of 3_2 @OA ₂ with T			
Figure S26	Time resolved phosphorescence titration of 3_2 @OA ₂ with T			
Figure S27	Steady state phosphorescence titration of 4_2 @OA ₂ with T			
Figure S28	Time resolved phosphorescence titration of 4 ₂ @OA ₂ with T			
Figure S29	Steady state phosphorescence titration of 5 @OA ₂ with T			
Figure S30	Steady state fluorescence titration of 6@OA ₂ with T			
Figure S31	Time resolved triplet-triplet absorption titration of $6@OA_2$ with T			
Figure S32	Steady state fluorescence titration of 7@OA ₂ with T	S21		
Figure S33	Steady state fluorescence titration of 8@OA ₂ with T	S21		
Table S1	¹ H NMR relaxation time of OA and 1 in presence of T^{\oplus} , T and T^{Θ}			
Table S2	¹ H NMR relaxation time of OA and 1 in presence of T^{\oplus} and other hosts	S23		
<u> </u>	other hosts Experimental section	S24		

Scheme S1. Structure of hosts and guests examined in this study. The letters "A" to "J" in OA represent the corresponding protons.

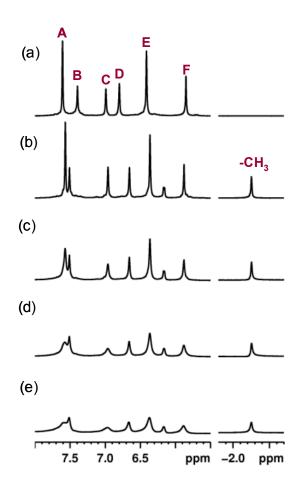
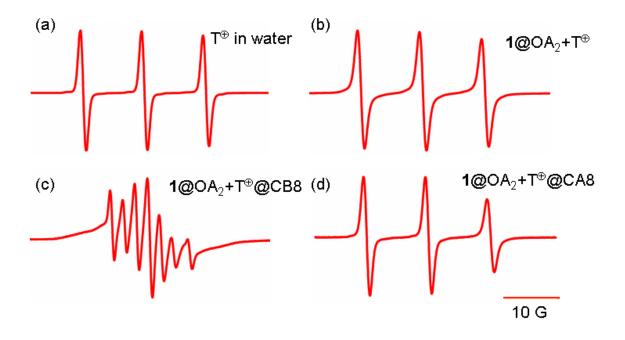
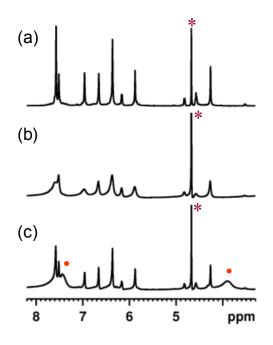
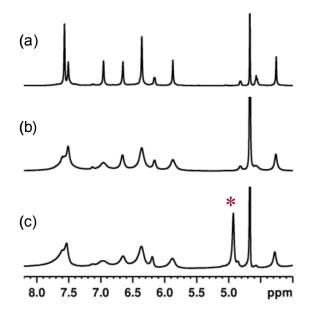
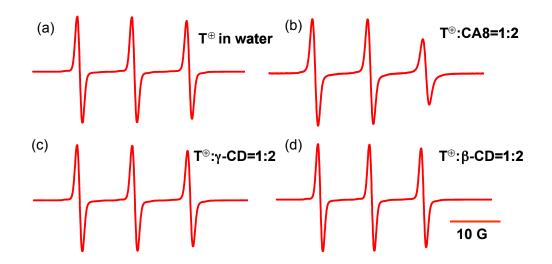
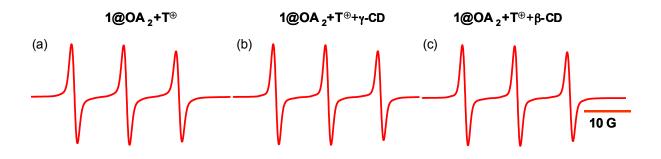
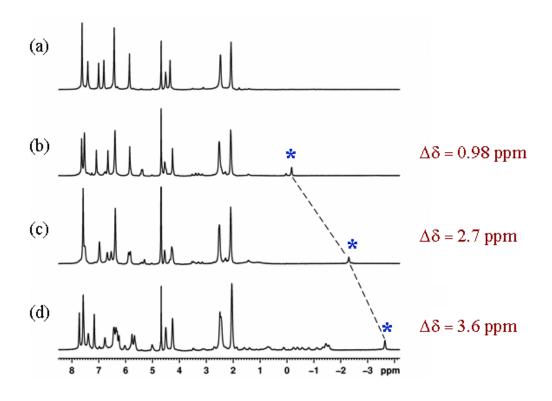



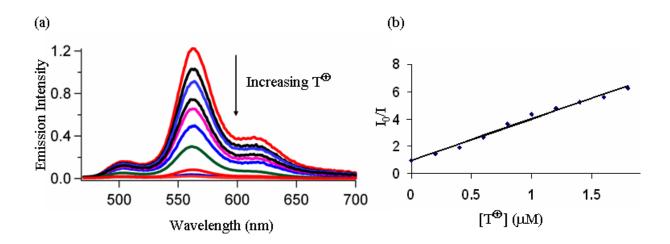
Figure S1. ¹H NMR spectra (500 MHz, D₂O) of (a) OA, (b) 1/OA(1:2), (c) $1/OA/T^{\oplus}$ (1:2:1), (d) $1/OA/T^{\oplus}$ (1:2:2), (e) $1/OA/T^{\oplus}$ (1:2:3). [1] = 0.5 mM, [OA] = 1 mM and [T^{\oplus}] = 0.5 mM to 1.5 mM in 10 mM borate buffered D₂O.

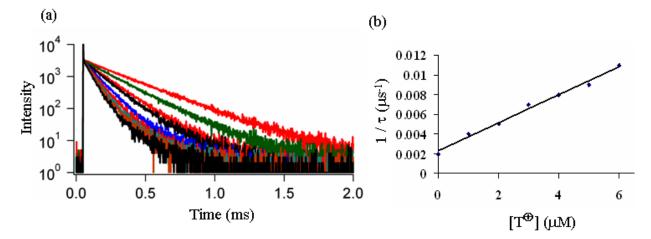
Figure S2. EPR spectra of (a) T^{\oplus} in water ($\tau_c = 0.02$ ns, $A_N = 16.8$ G), (b) $1/OA/T^{\oplus}$ (1:2:2; $\tau_c = 0.05$ ns, $A_N = 16.7$ G), (c) $1/OA/T^{\oplus}/CB8$ (1:2:2:2) and (d) $1/OA/T^{\oplus}/CA8$ (1:2:2:2; $\tau_c = 0.14$ ns, $A_N = 16.7$ G); [1] = 0.5 mM, [OA] = 1 mM, [T^{\oplus}] = 1 mM, [CB8] = 1 mM and [CA8] = 1 mM in 10 mM borate buffered H₂O.


Figure S3. ¹H NMR spectra (500 MHz, D₂O) of (a) 1/OA (1:2), (b) 1/OA/ T^{\oplus} (1:2:2), (c) 1/OA/ T^{\oplus} /CA8 (1:2:2:2), [1]=0.5 mM, [OA] = 1 mM, [T^{\oplus}] = 1 mM and [CA8] = 1 mM in 10 mM borate buffered D₂O, "•" represents CA8 proton resonances, "*" represents residual H₂O proton resonances.


Figure S4. ¹H NMR spectra (500 MHz, D₂O) of (a) 1/OA (1:2), (b) 1/OA/ T° (1:2:2) and (c) 1/OA/ T°/γ -CD (1:2:2:2), [1]=0.5 mM, [OA] = 1 mM, [T°] = 1 mM and [γ -CD] = 1 mM in 10 mM borate buffered D₂O, "*" represents γ -CD proton NMR signal.


Figure S5. EPR spectra of (a) **T**[⊕] in water ($\tau_c = 0.02 \text{ ns}$, $A_N = 16.8 \text{ G}$), (b) **T**[⊕]/CA8 (1:2) ($\tau_c = 0.17 \text{ ns}$, $A_N = 16.8 \text{ G}$), (c) **T**[⊕] /γ-CD (1:2) ($\tau_c = 0.02 \text{ ns}$, $A_N = 16.8 \text{ G}$) and (d) **T**[⊕] /β-CD ($\tau_c = 0.03 \text{ ns}$, $A_N = 16.8 \text{ G}$), [**T**[⊕]] = 1mM, [CA8] = 2 mM, [γ-CD] = 2 mM and [β-CD] = 2 mM in 10 mM borate buffered H₂O.


Figure S6. EPR spectra of (a) 1/OA/ T^{\oplus} (1:2:2) (τ_c = 0.05 ns, A_N = 16.7 G), (b) 1/OA/ T^{\oplus} /γ-CD (1:2:2:2) (τ_c = 0.04 ns, A_N = 16.8 G) and (c) 1/OA/ T^{\oplus} /β-CD (1:2:2:2) (τ_c = 0.05 ns, A_N = 16.7 G); [1] = 0.5 mM, [OA] = 1 mM, [T^{\oplus}] = 1 mM, [γ-CD] = 1 mM, and [β-CD] = 1 mM in H₂O.

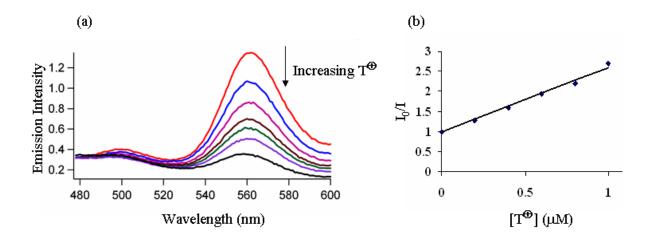

Figure S7. ¹H NMR spectra (500 MHz, D₂O) of (a) OA, (b) α -methyl dibenzyl ketone @OA₂, (c) *para*-methyl dibenzyl ketone @OA₂ and (d) α -octyl dibenzyl ketone @OA₂; [guest] = 0.5 mM and [OA] = 1 mM in 10 mM borate buffered D₂O. "*" represents –CH₃ proton signals of corresponding guest molecule. $\Delta\delta$ is the difference in chemical shift in – CH₃ signal in CDCl₃ and inside OA capsule.

Figure S8. (a) Steady state phosphorescence titration of $1@OA_2$ with T^{\oplus} and (b) Stern-Volmer plot for phosphorescence quenching of $1@OA_2$ by T^{\oplus} . $\lambda_{ex} = 320$ nm, [1]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T^{\oplus}] = 0 to 2 μ M.

Figure S9. (a) Time resolved phosphorescence titration of 1@OA₂ with T^{\oplus} and (b) phosphorescence decay constant of 1@OA₂ at different concentration of T^{\oplus} . $\lambda_{ex} = 320$ nm, $\lambda_{em} = 560$ nm, [1]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T^{\oplus}] = 0 to 6 μ M; $k_q = (1.5 \pm 0.2)$ x 10⁹ M⁻¹ s⁻¹.

Figure S10. (a) Steady state phosphorescence titration of 2@OA₂ with T^{\oplus} and (b) Stern-Volmer plot for phosphorescence quenching of 2@ OA₂ by T^{\oplus} . $\lambda_{ex} = 300$ nm, [2]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T^{\oplus}] = 0 to 1 μ M.

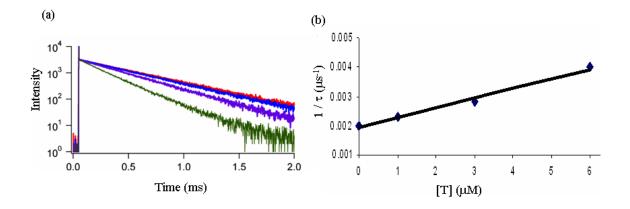
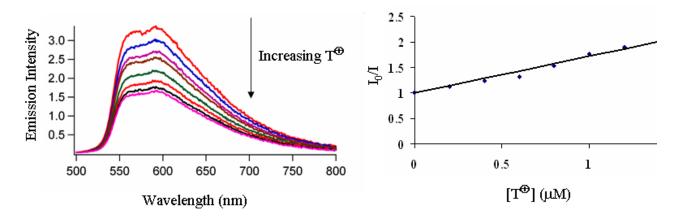
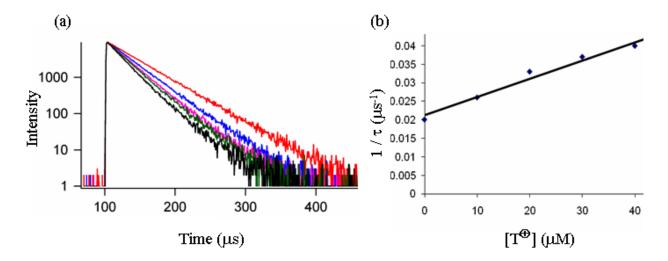
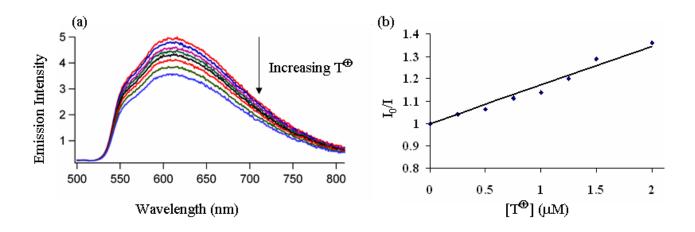
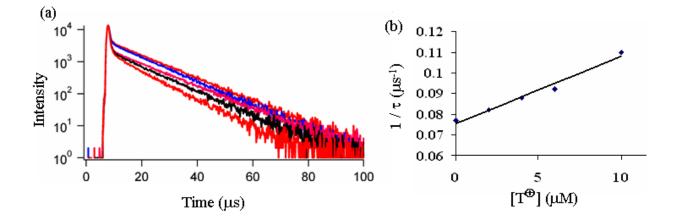
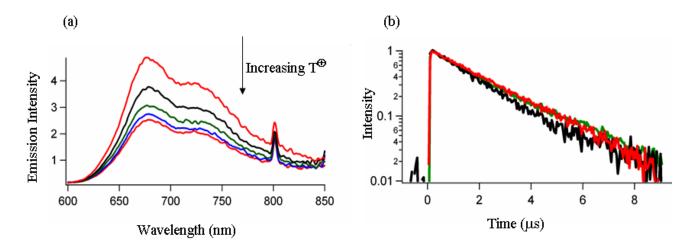
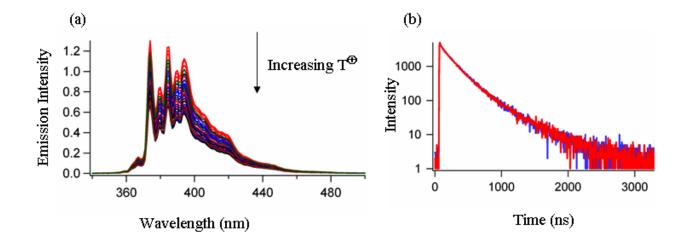


Figure S11. (a) Time resolved phosphorescence titration of 2@OA₂ with T^{\oplus} and (b) phosphorescence decay constant of 2@OA₂ at different concentration of T^{\oplus} . $\lambda_{ex} = 300$ nm, $\lambda_{em} = 560$ nm, [1]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T^{\oplus}] = 0 to 1 μ M; k_q = (1.1±0.2) x 10⁹ M⁻¹ s⁻¹.


Figure S12. (a) Steady state phosphorescence titration of $\mathbf{3}_2$ @OA₂ with \mathbf{T}^{\oplus} and (b) Stern-Volmer plot for phosphorescence quenching of $\mathbf{3}_2$ @ OA₂ by \mathbf{T}^{\oplus} . $\lambda_{ex} = 254$ nm, [**3**]= $2x10^{-5}$ M, [OA] = $2x10^{-5}$ M and [\mathbf{T}^{\oplus}] = 0 to 1.4 μ M.


Figure S13. (a) Time resolved phosphorescence titration of $\mathbf{3}_2$ @OA₂ with \mathbf{T}^{\oplus} and (b) phosphorescence decay constant of $\mathbf{3}_2$ @OA₂ at different concentration of \mathbf{T}^{\oplus} . $\lambda_{ex} = 254$ nm, $\lambda_{em} = 600$ nm, $[\mathbf{3}] = 10^{-4}$ M, $[OA] = 10^{-4}$ M and $[\mathbf{T}^{\oplus}] = 0$ to 50 µM, $k_q = (1\pm0.6) \times 10^9$ M⁻¹ s⁻¹.


Figure S14. (a) Steady state phosphorescence titration of 4_2 @OA₂ with T^{\oplus} and (b) Stern-Volmer plot for phosphorescence quenching of 4_2 @ OA₂ by T^{\oplus} . $\lambda_{ex} = 254$ nm, [4]= $2x10^{-5}$ M, [OA] = $2x10^{-5}$ M and [T^{\oplus}] = 0 to 2 μ M.

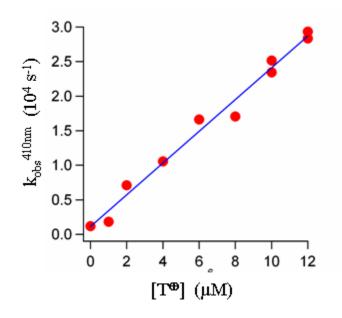
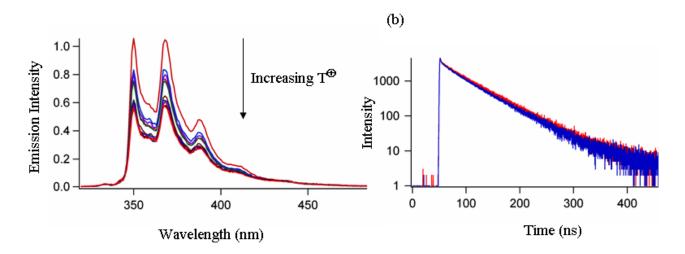
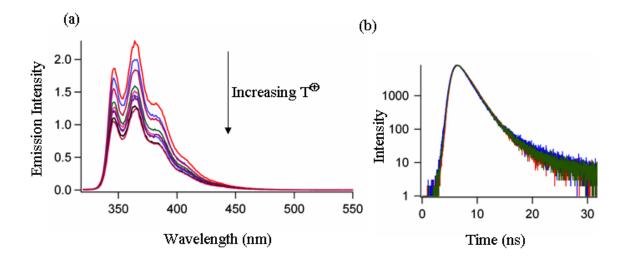
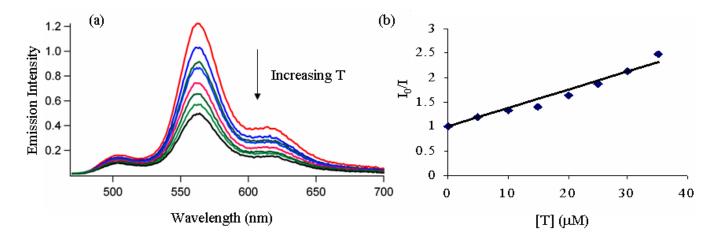
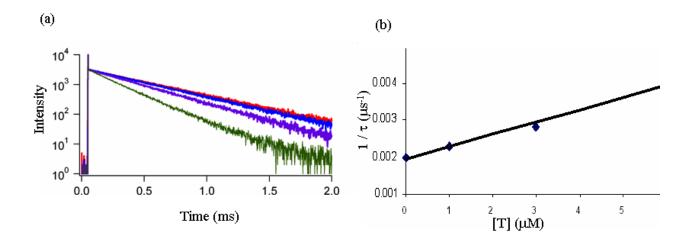

Figure S15. (a) Time resolved phosphorescence titration of 4_2 @OA₂ with T^{\oplus} and (b) phosphorescence decay constant of 4_2 @OA₂ at different concentration of T^{\oplus} . $\lambda_{ex} = 254$ nm, $\lambda_{em} = 600$ nm, [4]= 2x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T^{\oplus}] = 0 to 10 μ M; $k_q = (2\pm0.5) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$.

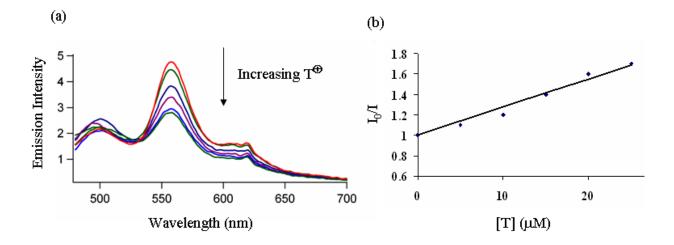
Figure S16. (a) Steady state phosphorescence titration of 5@OA₂ with T^{\oplus} and (b) time resolved phosphorescence titration of 5@OA₂ with T^{\oplus} . $\lambda_{ex} = 400$ nm, $\lambda_{em} = 675$ nm, [5]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T^{\oplus}] = 0 to 10 μ M.

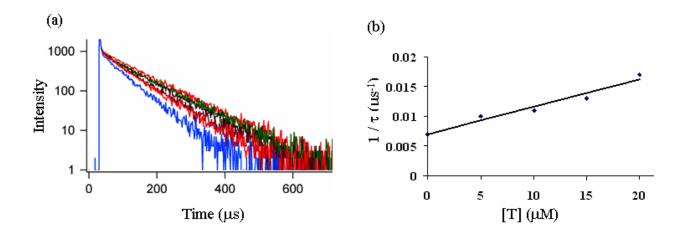
Figure S17. (a) Steady state fluorescence titration of 6@OA₂ with T^{\oplus} and (b) time resolved phosphorescence titration of 6@OA₂ with T^{\oplus} . $\lambda_{ex} = 320$ nm, $\lambda_{em} = 375$ nm, [6]= 1×10^{-5} M, [OA] = 2×10^{-5} M and $[T^{\oplus}] = 0$ to 20 µM.

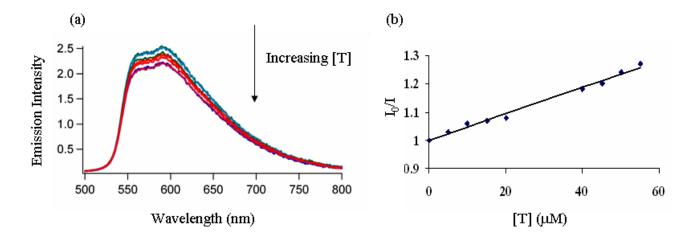
Figure S18. Time resolved triplet-triplet absorption titration of 6@OA₂ with \mathbf{T}^{\oplus} ; $\mathbf{k}_q = (2.3\pm0.1) \ge 10^9 \text{ M}^{-1} \text{ s}^{-1}$, [6] = 4 $\ge 10^{-5} \text{ M}$, [OA] = 8 $\ge 10^{-5} \text{ M}$, [\mathbf{T}^{\oplus}] = 0 to 12 μ M

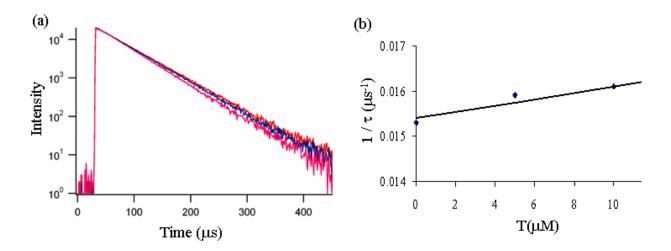




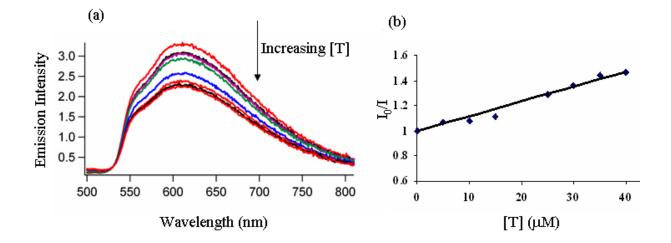

Figure S19. (a) Steady state fluorescence titration of $7@OA_2$ with T^{\oplus} and (b) time resolved phosphorescence quenching of $7@OA_2$ by T^{\oplus} . $\lambda_{ex} = 300$ nm, $\lambda_{em} = 350$ nm, $[7] = 1x10^{-5}$ M, $[OA] = 2x10^{-5}$ M and $[T^{\oplus}] = 0$ to 20μ M.


Figure S20. (a) Steady state fluorescence titration of **8**@OA₂ with \mathbf{T}^{\oplus} and (b) time resolved fluorescence titration of **8**@OA₂ with \mathbf{T}^{\oplus} . $\lambda_{ex} = 320$ nm, $\lambda_{em} = 350$ nm, [**8**]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [\mathbf{T}^{\oplus}] = 0 to 20 μ M.


Figure S21. (a) Steady state phosphorescence titration of 1@OA₂ with T and (b) Stern-Volmer plot for phosphorescence quenching of 1@ OA₂ by T. $\lambda_{ex} = 320$ nm, [1]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T] = 0 to 35 μ M.


Figure S22. (a) Time resolved phosphorescence titration of 1@OA₂ with **T** and (b) phosphorescence decay constant of 1@OA₂ at different concentration of **T**. $\lambda_{ex} = 320$ nm, $\lambda_{em} = 560$ nm, [1]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T] = 0 to 6 μ M; $k_q = (2\pm1) \times 10^8$ M⁻¹ s⁻¹.


Figure S23. (a) Steady state phosphorescence titration of 2@OA₂ with T and (b) Stern-Volmer plot for phosphorescence quenching of 2@ OA₂ by T. $\lambda_{ex} = 320$ nm, [2]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T] = 0 to 25 μ M.


Figure S24. (a) Time resolved phosphorescence titration of 2@OA₂ with **T** and (b) phosphorescence decay constant of 2@OA₂ at different concentration of **T**. $\lambda_{ex} = 320$ nm, $\lambda_{em} = 560$ nm, [2]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T] = 0 to 20 μ M; k_q = (4±0.8) x 10⁷ M⁻¹ s⁻¹

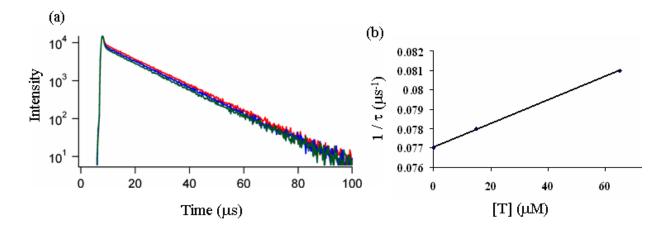
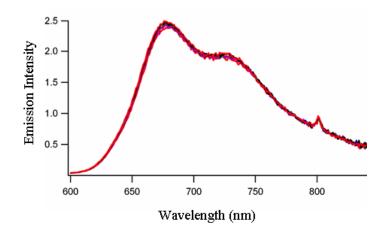
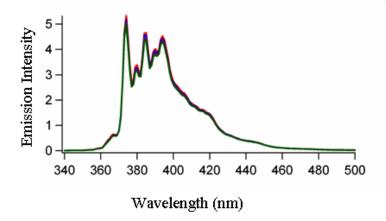
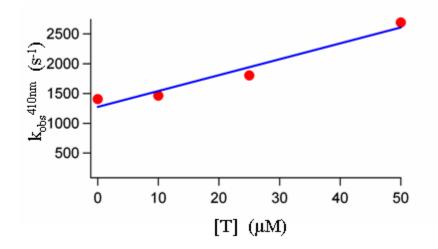
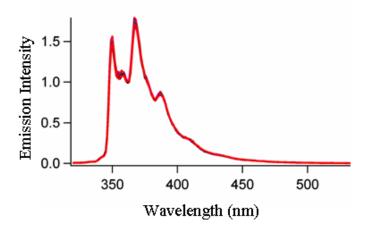

Figure S25. (a) Steady state phosphorescence titration of $\mathbf{3}_2$ @OA₂ with **T** and (b) Stern-Volmer plot for phosphorescence quenching of $\mathbf{3}_2$ @ OA₂ by **T**. $\lambda_{ex} = 254$ nm, [**3**]= $2x10^{-5}$ M, [OA] = $2x10^{-5}$ M and [**T**] = 0 to 60 μ M.

Figure S26. (a) Time resolved phosphorescence titration of $\mathbf{3}_2$ @OA₂ with **T** and (b) phosphorescence decay constant of $\mathbf{3}_2$ @OA₂ at different concentration of **T**. $\lambda_{ex} = 254$ nm, $\lambda_{em} = 600$ nm, [**3**]= 2x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [**T**] = 0 to 10 μ M, $k_q = (7\pm 2) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$.

Figure S27. (a) Steady state phosphorescence titration of 4_2 @OA₂ with T and (b) Stern-Volmer plot for phosphorescence quenching of 4_2 @ OA₂ by T. $\lambda_{ex} = 254$ nm, [4]= $2x10^{-5}$ M, [OA] = $2x10^{-5}$ M and [T] = 0 to 40 μ M.

Figure S28. (a) Time resolved phosphorescence titration of 4_2 @OA₂ with **T** and (b) phosphorescence decay constant of 4_2 @OA₂ at different concentration of **T**. $\lambda_{ex} = 254$ nm, $\lambda_{em} = 625$ nm, [4] = $2x10^{-5}$ M, [OA] = $2x10^{-5}$ M and [T] = 0 to 65 μ M; $k_q = (6\pm 2) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$.


Figure S29. Steady state phosphorescence titration of 5@OA₂ with T. $\lambda_{ex} = 400$ nm, [1]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T] = 0 to 50 μ M.

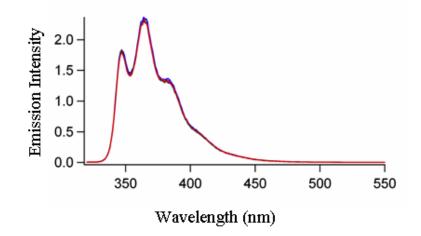

Figure S30. Steady state fluorescence titration of 6@OA₂ with T. $\lambda_{ex} = 320$ nm, [1]= 1×10^{-5} M, [OA] = 2×10^{-5} M and [T] = 0 to 50 μ M.

Figure S31. Time resolved triplet-triplet absorption titration of $6@OA_2$ with **T**, $[6] = 4x10^{-5}$ M, $[OA] = 8x10^{-5}$ M and [T] = 0 to $80 \ \mu$ M; $k_q = (1.6 \pm 0.5) \ x \ 10^7 \ M^{-1} \ s^{-1}$.

Figure S32. Steady state fluorescence titration of 7@OA₂ with T. $\lambda_{ex} = 300$ nm, [7]= 1x10⁻⁵ M, [OA] = 2x10⁻⁵ M and [T] = 0 to 50 μ M.

Figure S33. Steady state fluorescence titration of **8**@OA₂ with **T.** $\lambda_{ex} = 300$ nm, [**8**]= 1×10^{-5} M, [OA] = 2×10^{-5} M and [**T**] = 0 to 50 μ M.

Protons	$(T_{1,d})^a$	$(T_{1,obs})^{b}$	$(1/T_{1,p})^{c}$	$(T_{1,obs})$	(1/T _{1,p})	$(T_{1,obs})$	$(1/T_{1,p})$
		[T [⊕]]	[T [⊕]]	[T]	[T]	T ^e]	[T ^θ]
H _A	2.42	0.07	14.28	0.31	2.86	2.09	0.07
H _B	0.56	0.23	2.56	0.32	1.33	0.54	0.07
H _C	0.76	0.08	11.11	0.24	2.86	0.7	0.11
H _D	0.35	0.15	2.85	0.19	2.38	0.31	0.37
H _E	1.14	0.14	6.25	0.31	2.33	0.96	0.16
H _F	1.11	0.14	6.25	0.3	2.44	0.88	0.24
H _I	0.38	0.19	2.63	0.26	1.22	0.36	0.15
H _J	0.35	0.12	5.56	0.23	1.49	0.32	0.26
Н -снз	0.82	0.38	1.43	0.5	0.78	0.78	0.06

Table S1. ¹H relaxation time (T₁) for OA (host) and **1** (guest) in presence of nitroxide radicals (T^{\circ}, T and T^{Θ}, see Scheme S1).

Note:

^a $T_{1,d}$ = relaxation time in absence of the paramagnetic center

^b $T_{1,obs}$ = observed relaxation time in presence of paramagnetic center

^c $T_{1,p}$ = relaxation time caused by the paramagnetic species

$$1/T_{1,p} = 1/T_{1,obs} - 1/T_{1,d}$$

 $1/T_{1,p} \propto r^{-6}$, r = distance between nucleus and paramagnetic center.

 $[1] = 0.5 \text{ mM}, [OA] = 1 \text{ mM}, [T^{\oplus}] = [T] = [T^{\Theta}] = 0.5 \text{ mM}, \text{ in 10 mM borate buffered } D_2O.$

Relaxation time for H_G and H_H could not be measured as these proton signals merged with residual H_2O signal.

Protons	$(T_{1,d})^a$	$(T_{1,obs})^b$	$(T_{1,p})^{c}$	$(T_{1,obs})$	(T _{1,p})	$(T_{1,obs})$	(T _{1,p})
		[T [⊕]]	[T [⊕]]	[T [⊕]]+	[T [⊕]]	[T [⊕]]+	[T [⊕]]
		+ CB8	+ CB8	CA8	+ CA8	γ-CD	+ γ-CD
H _A	2.42	1.64	0.2	1	0.6	0.15	6.26
H _B	0.56	0.52	0.13	0.4	0.71	0.26	2.06
H _C	0.76	0.68	0.15	0.66	0.2	0.05	18.68
H _D	0.35	0.35	0.03	0.26	0.99	0.13	4.83
H _E	1.14	1.06	0.07	1.14	0	0.15	5.79
H _F	1.11	1.05	0.05	1.1	0.01	0.28	2.67
H _I	0.38	0.35	0.2	0.3	0.7	0.27	1.07
H _J	0.35	0.35	0	0.29	0.6	0.1	7.14
Н -снз	0.82	0.76	0.09	0.79	0.05	0.37	1.48

Table S2. ¹H relaxation time (T₁) for OA (host) and **1** (guest) in presence of T° (see Scheme 1) and other hosts (CB8, CA8 and γ -CD)

Note:

^a $T_{1,d}$ = relaxation time in absence of the paramagnetic center

^b $T_{1,obs}$ = observed relaxation time in presence of paramagnetic center and other host ^c $T_{1,p}$ = relaxation time caused by the paramagnetic species in presence of other host $1/T_{1,p} = 1/T_{1,obs} - 1/T_{1,d}$

 $1/T_{1,p} \propto r^{-6}$, r = distance between nucleus and paramagnetic center.

 $[1] = 0.5 \text{ mM}, [OA] = 1 \text{ mM}, [T^{\circ}] = 0.5 \text{ mM}, [CB8] = 0.5 \text{ mM}, [CA8] = 0.5 \text{ mM} \text{ and } [\gamma-CD] = 0.5 \text{ mM} \text{ in } 10 \text{ mM} \text{ borate buffered } D_2O.$

Relaxation time for H_G and H_H could not be measured as these proton signals merged with residual H_2O signal.

Experimental Section

Materials and Methods: Guests 4,4'-dimethylbenzil (1), benzil (2), 4-carboxy-TEMPO (T^{Θ}) and TEMPO (T) were used as received from Sigma-Aldrich/Acros. Camphorthione¹ (3), adamantanethione¹ (4), xanthione¹ (5), 4,4'-dimethyl stilbene² (8) and cationic nitroxide radical (T°)³ were synthesized following literature procedures. Pyrene (6) and phenanthrene (7) (from Sigma-Aldrich/Acros) were recrystallized from EtOH. The hosts octa acid⁴, cucurbit[7]uril⁵, calixarene octasulfonic acid^{6,7} were synthesized following published procedures. β -cyclodextrin and γ -cyclodextrin were purchased from Sigma-Aldrich/Acros.

General protocol for NMR study:

¹H NMR studies were carried out on a Bruker 500 MHz NMR spectrometer at 25 °C. 600 μ L of a D₂O solution of host OA (1mM OA in 10 mM Na₂B₄O₇) was taken in a NMR tube and to this 0.5 equivalent increment of guest (5 μ L of a 60 mM solution in DMSO*d*₆) was added. The ¹H NMR experiments were carried out after shaking the NMR tube for 5 min after each addition. Completion of complexation was monitored by disappearance of the free host OA signals upon addition of guest. Required amount of nitroxide solution (T°, T and T^Θ; stock solutions (30 mM) were prepared in D₂O) was added in the complex and ¹H NMR was recorded after shaking the NMR tube for 5 min. Spin-lattice relaxation times T₁ were determined using a standard 180- τ -90 inversion recovery pulse sequence with 10 τ values between 0.001 to 10 s. The T₁ measurements were performed on a Bruker 400 MHz NMR spectrometer at 25 °C.

General protocol for luminescence study:

Fluorescence emission spectra were recorded on a FS920CDT Edinburgh steady-state fluorimeter and the lifetime measurements on FL900CDT fluorescence lifetime spectrometer. Capsular assemblies (1 mM) were made by adding 5 μ L (for 2:1; H:G complex) and 10 μ L (for 2:2; H:G complex) of 60 mM solution of guest (in DMSO solution) to 0.6 mL of 1mM OA in 10 mM borate buffer in H₂O. It was diluted appropriately with 10 mM buffer solution to have the required concentration of host/guest complex. The solutions were deoxygenated by purging with nitrogen gas for 30 min prior

to the emission study. 10 μ L of nitroxides (T°, T and T^Θ; stock solutions were prepared in H₂O) were added each time and further deoxygenated by purging nitrogen for 20 min and then recorded emission spectra. The quenching rate constants for nitroxide quenching were derived from the slope of the plot of nitroxide concentration vs. triplet state decay constant (1/ τ). Required amount of CB8 (stock solution was prepared in H₂O) was added to the solution (after quenching by nitroxide) and emission spectra were recorded after purging with nitrogen.

Triplet-triplet absorption measurements:

Transient absorption measurements were performed by laser flash photolysis employing the pulses from a Nd-YAG laser (GCR-150-30, Spectra Physics) at 355 nm (~5 ns pulse length) and a computer-controlled system that has been described elsewhere.¹⁰

General protocol for EPR study:

Preparation of host/guest complex: Stock solution (20 mM) of guest was prepared in CHCl₃. Host stock solution (5 mM) was prepared in H₂O. Required amount of guest solution in CHCl₃ was added in a vial and the solvent was evaporated by shaking in a mechanical shaker. Then calculated amount of host solution and water were added and shaken by the mechanical shaker for 15 h. The required amount of nitroxide solutions were added to it and shaken for 2 h.

EPR spectra were recorded at room temperature in Bruker EMX spectrometer at 9.5 GHz (X band) employing 100 KHz of field modulation frequency. Spectrometer setting: Power, 1.997 mW; amplitude modulation, 0.50 G; time constant, 163.84 ms; conversion time, 163.84 ms. Samples were loaded to quartz (CFQ) EPR tubes from Wilmad LabGlass (2 mm OD, 0.5 mm wall thickness, 10 cm height) for the EPR experiments.

EPR Simulations:

The EPR spectra of three-line signals (three hyperfine lines: $2I_N+1 = 3$) were computed by the well-established procedure of Budil and Freed.⁸ The main input parameters were as follows. (a) the gii components (for the coupling between the electron spin and the

magnetic field) were the ones previously used for the nitroxide ($g_{xx}=2.009$, $g_{yy}=2.006$, gzz=2.0025),⁹ and were considered constant for all samples; (b) The Aii principal values of the between electron and the A tensor for coupling nuclear spin $(\langle A_N \rangle = (A_{xx} + A_{yy} + A_{zz})/3)$. An increase in the environmental polarity of the NO group provokes an increase in the A tensor components owing to the increased electron spin density on the nitrogen nucleus. (c) The perpendicular component of the correlation time for rotational diffusion (τ_{perp}). Brownian motion was assumed in the calculation, for which the diffusion component is $D_{perp} = 1/(6\tau_{perp})$. The EPR spectra of the seven-line signal were computed by using the program Simfonia by Bruker.

References:

¹ Jayaraj, N.; Jockusch, S.; Kaanumalle, L. S.; Turro, N. J.; Ramamurthy, V. *Can. J. Chem.* **2011**, *89*, 203-213.

² Parthasarathy, A.; Ramamurthy, V. Photochem. Photobiol. Sci. 2011, Advanced Article.

³ Jayaraj, N.; Porel, M.; Ottaviani, F. M.; Maddipatla, M. V. S.; Modelli, A., Da Silva, J.; Bhogala, B. R.; Captain, B.; Jockusch, S.; Turro, N. J.; Ramamurthy, V. *Langmuir*, **2009**, *25*,13820–13832

⁴ Gibb, C. L. D.; Gibb, B. C. J. Am. Chem. Soc. 2004, 126, 11408–11409.

⁵ Day, A.; Arnold, A. P.; Blanch, R. J.; Snushall, B. J. Org. Chem. 2001, 66, 8094.

⁶Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R. *J. Am. Chem. Soc.*, **1981**, *103*, 3782-3792.

⁷ Shinkai, S.; Mori, S.; Koreishi, H.; Tsubaki, T.; Manabe, O.; *J. Am. Chem. Soc.*, **1986**, *108*, 2409-2416.

⁸ Budil, D. E.; Lee, S.; Saxena, S.; Freed, J. H. J. Magn. Reson., 1996, A120, 155.

⁹ Klajnert, B.; Cangiotti, M.; Calici, S.; Majoral, J.P.; Caminade, A.M.; Cladera, J.;

Bryszewska, M.; Ottaviani, M.F. Macromolec. Biosci., 2007, 7, 1065-1074.

¹⁰ Yagci, Y.; Jockusch, S.; Turro, N. J. *Macromolecules*, 2007, 40, 4481-4485