Supplementary Information for:

A reactive Ru-binaphtholate building block with self-tuning hapticity

Johanna M. Blacquiere, Carolyn S. Higman, Robert McDonald[†] and Deryn E. Fogg*

Center for Catalysis Research & Innovation, and Department of Chemistry, University of Ottawa, Ottawa ON, Canada K1N 6N5

Table of Contents:

p.S2	Road map for assignment of key ¹ H and ¹³ C{ ¹ H} NMR signals for the BINO
	ligand.

p. S3 Exchange between 7'' and 7' by ³¹P spin saturation transfer.

p. S7 NMR spectra for $Ru(\eta^3, \eta^1-(S)-BINO)(PPh_3)_2(MeCN)$ **9**.

p. S11 NMR spectra for $Ru(\eta^1, \eta^1 - (S) - BINO)(PPh_3)_2(MeCN)_2$ 10.

p. S14 NMR spectra for $Ru(\eta^3, \eta^1-(S)-BINO)(PPh_3)(py)_2$ 11.

p. S13 NMR spectra for $Ru(\eta^1, \eta^1-(S)-BINO)(PPh_3)(py)_3$ **12**.

p. S18 NMR spectra for $Ru(\eta^3, \eta^1-(S)-BINO)(PPh_3)_2(=C=CH'Bu)$ 13.

p. S4 NMR spectra for Ru((S)-BINO)(PPh₃)₂7.

[†] X-Ray Crystallography Laboratory, Chemistry Department, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton AB, Canada T6G 2G2.

Figure S1. Road map showing a convenient strategy for assignment of key ¹H and ¹³C NMR signals for the BINO ligand. (Black arrows: ¹H-¹H COSY; blue, ¹H-¹³C HMBC; red: ¹H-¹³C HMQC).

Figure S2. ³¹P spin saturation transfer plot: relative intensities of the signal for **7**' after saturating that for **7**", as a function of the saturation delay (40 °C, C_6D_6).

Figure S3. ¹H NMR spectrum of **7** (CD₂Cl₂). (a) Full spectrum; (b) expansion of the aromatic region with peak assignments. Solvent peaks are designated by (*).

Figure S4. ¹³C{¹H} NMR spectrum of **7** (CD₂Cl₂). (a) Full spectrum; b-d) expansions of the aromatic region with peak assignments.

Figure S5. Variable-temperature ${}^{31}P\{{}^{1}H\}$ NMR spectra of **7** (CD₂Cl₂). At 24 °C, **7**" appears at 56.9 ppm, **7**' at 43.5 ppm.

Table S1. Proportions of 7" and 7' in common solvents.^a

Solvent	Relative %	 -
	7''	7'
CDCl ₃	100	0
CD_2Cl_2	79	21
C_7D_8	73	27
C_6D_6	67	33
THF	53	47
THF^b	54	46

^a Determined from relative ³¹P{¹H} NMR integration values. ^bAfter 5 h in solution.

Figure S6. $^{31}P\{^{1}H\}$ NMR spectra showing transformation of **7** (C_6D_6) into **9** and **10** on addition of MeCN. Ratios of **9:10** as a function of added CH_3CN are as follows: (b) 3:1; (c) 1.1:1; (d) 1:1.3; (e) 1:2. OPPh₃ used as internal standard.

Figure S7. ¹H NMR spectrum of **9** (CD₂Cl₂). (a) Full spectrum; (b) expansion of the aromatic region with peak assignments. Solvent peaks are designated by (*).

Figure S8. ¹³C{¹H} NMR spectrum of **9** (CD₂Cl₂). (a) Full spectrum; (b) expansion of the aromatic region, showing peak assignments. Unassigned signals are due to OPPh₃; residual solvent signals are designated (*).

Figure S9. ³¹P{¹H} NMR spectrum of **9** (CD₂Cl₂). Unassigned signals are designated by (*).

Figure S10. ¹H NMR spectrum of **10** (1:2 CD₃CN-C₆D₆). (a) Full spectrum; (b) expansion of the aromatic region with peak assignments. Complex **9** (ca. 10%) is also present. Solvent peaks are designated by (*).

Figure S11. 13 C{ 1 H} NMR spectrum of **10** (1:2 CD₃CN-C₆D₆). (a) Full spectrum; (b) expansion of the aromatic region with peak assignments. The C₆D₆ solvent signal obscures peaks for PPh₃, C4a and C5; their locations were determined by correlation experiments.

Figure S12. $^{31}P\{^{1}H\}$ NMR spectrum revealing the in situ formation of **12** and free PPh₃ on adding pyridine to **7** (C_5H_5N with C_6D_6 for lock). The signal at 49.4 ppm is an unidentified side-product.

Figure S13. ¹H NMR spectrum of the **11-12** mixture (20% **12**; CD₂Cl₂). (a) Aromatic region at 24 °C; (b) aromatic region at −20 °C. Assignments are included for resonances located via correlation experiments.

Figure S14. Low-temperature ¹³C{¹H} NMR spectrum of the **11-12** mixture (20% **12**; CD₂Cl₂; –20 °C). (a) Aromatic region; b and (c) expansions of the aromatic region. Assignments are included for resonances located via correlation experiments.

Figure S15. Variable-temperature $^{31}P\{^{1}H\}$ NMR spectra of the 11-12 mixture (20% 12; $CD_{2}Cl_{2}$).

Figure S16. ^{1}H NMR spectrum of 12 in C_5D_5N . (a) Aromatic region; (b) expansion of the aromatic region.

Figure S17. 13 C{ 1 H} NMR spectrum of **12**, obtained by dissolving **11** in C₅D₅N. (a) Aromatic region; (b) expansion of the aromatic region. Assignments are included for signals located via correlation experiments.

Figure S18. ¹H NMR spectrum of **13** (CD₂Cl₂) acquired at 24 °C. (a) Full spectrum; (b) expansion of the aromatic region. Solvent peaks are designated by (*).

Figure S19. Low-temperature ¹H NMR spectrum of **13** (CD₂Cl₂, -60 °C). (a) Full spectrum; (b) expansion of the aromatic region. Solvent peaks are designated by (*).

Figure S20. ¹³C{¹H} NMR spectrum of **13** (CD₂Cl₂) acquired at -60 °C. (a) Full spectrum; (b) and (c), expansions of the aromatic region with signal assignments. The RuC signal ($\delta = 347.2$ ppm) is not shown: it was located via a ¹H-¹³C HMBC correlation experiment. Solvent peaks are designated by (*).

Figure S21. Variable-temperature ${}^{31}P\{{}^{1}H\}$ NMR spectra of **13** (CD₂Cl₂). Signal broadening at low temperatures may reflect isomerization from η^{3} , η^{1} - to η^{1} , η^{1} -BINO coordination.