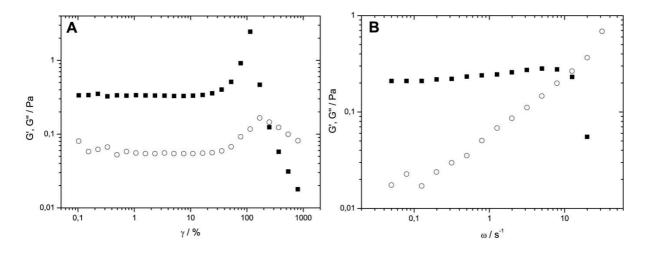
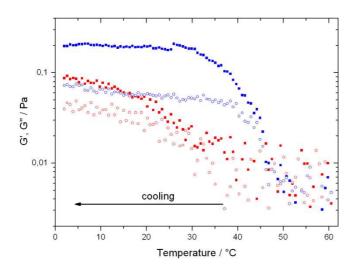

SUPPORTING INFORMATION PARAGRAPH



DLS and rheological measurements of Me₂PE-C32-Me₂PE at pH 5


Figure S1: Autocorrelation function and fit for aqueous suspensions ($c = 1 \text{ mg ml}^{-1}$) of Me₂PE-C32-Me₂PE at **A** pH 11 and **B** pH 12 at 30 °C. The inset shows the number weighted size distribution.

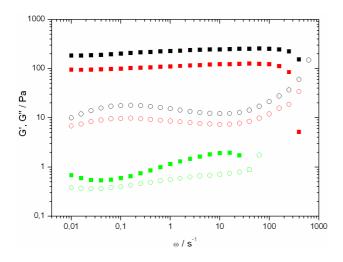

Figure S2: Time dependent rheological data of an aqueous suspension of Me₂PE-C32-Me₂PE (c = 1 mg ml⁻¹) in buffer at pH 5 at 2 °C after heating to 80 °C and subsequent cooling to 2 °C. The heating and cooling rate was 20 K h⁻¹, $\omega = 1$ rad s⁻¹ and $\gamma = 1$ %. G': solid squares, G'': open circles.

Figure S3: A amplitude sweep ($\omega = 1 \text{ rad s}^{-1}$) and **B** frequency sweep ($\gamma = 1 \%$) of a suspension of Me₂PE-C32-Me₂PE (c = 1 mg ml⁻¹) at pH 11 with 100 mM MgCl₂ at 2 °C. G': filled squares, G'': open circles.

Figure S4: Temperature dependent rheological data of the Me₂PE-C32-Me₂PE suspensions (c = 1 mg ml⁻¹) at pH 11 with 250 mM (red) and 1 M (blue) KCl (G': filled squares, G': open circles) during the cooling process. The cooling rate was 20 °C h⁻¹. Deformation ($\gamma = 1 \%$) and angular frequency ($\omega = 1 \text{ rad s}^{-1}$) were chosen inside the linear viscoelastic region.

Figure S5: Frequency sweeps (with $\gamma = 1$ %) of a suspension of Me₂PE-C32-Me₂PE (c = 8 mg ml⁻¹) in buffer at pH 5 at 2 °C (black), 20 °C (red), and 55 °C (green). G': filled squares, G'': open circles.