Supporting Information for: # The distinguished roles with various vanadium loadings of $CoCr_{2-x}V_xO_4$ (x=0-0.20) for methane combustion Jinghuan Chen [†], Wenbo Shi [†], Shijian Yang [†], Hamidreza Arandiyan [†], Junhua Li *, [†], [‡] ⁺ School of Environment, Tsinghua University, Beijing, 100084, China [‡] State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing, 100084, China # Number of Supporting Information pages (including this title page): 6 #### Results and discussion about figures in the Supporting Information (p. S2) ## List of Figures (p. S3-S6): **Figure S1**: Methane conversion as a function of temperature over the $CoCr_{2-x}V_xO_4$ (x = 0, 0.05 and **0.25**) catalysts. **Figure S2**: TEM images of the $CoCr_{1.80}V_{0.20}O_4$ catalyst. **Figure S3**: XRD patterns of the Co_3O_4 , CrO_x and VO_x catalysts. **Figure S4:** CH₄ conversion (A) and CH₄ specific reaction rate (B) as a function of the temperature over the Co_3O_4 , CrO_x and VO_x catalysts. ^{*} Corresponding author e-mail: lijunhua@tsinghua.edu.cn #### Results and discussion about figures in the Supporting Information The $CoCr_{1.75}V_{0.25}O_4$ catalyst was prepared and investigated for methane combustion. Figure S1 shows the catalytic activity of the $CoCr_{1.75}V_{0.25}O_4$ catalyst as a function of the reaction temperature. For comparison purpose, the activity of the $CoCr_2O_4$ and $CoCr_{1.95}V_{0.05}O_4$ was also given. It can be observed that further vanadium doping significantly decreased the activity, the methane conversion at 700 °C over $CoCr_{1.75}V_{0.25}O_4$ was as low as 21%. Transmission electron microscopy (TEM) was collected on a JEOL JEM 2010 microscope operating at 200 kV equipped with an energy dispersive X-ray (EDX) system. As shown in Figure S2, vanadium oxides cannot be observed even on well dispersed particles of the $CoCr_{1.80}V_{0.20}O_4$ sample. For better comparison, pure oxides of cobalt, chromium and vanadium were prepared using the similar procedures with the $CoCr_{2-x}V_xO_4$ catalysts, and their catalytic performance, BET surface areas and XRD patterns were also investigated. As shown in Figure S3, the VO_x was combined phases of V_2O_5 (JCPDS 41-1426), VO_2 (PDF 43-1051) and V_6O_{13} (PDF 43-1050), while chromium and cobalt oxides were pure phase as expected according to Cr_2O_3 (JCPDS 6-0504) and Co_3O_4 (JCPDS 42-1467), respectively. The specific surface area was 9.5, 116.9 and 1.5 m²/g for VO_x , CrO_x and Co_3O_4 , respectively. Figure S4 shows the activity of the three oxides. Apparently, methane conversion over CrO_x was better than Co_3O_4 , however, if we take the surface area into account, the specific reaction rate of Co_3O_4 was much higher than that of the CrO_x catalyst. In addition, VO_x showed nearly no activity towards methane combustion. **Figure S1.** Methane conversion as a function of temperature over the $CoCr_{2-x}V_xO_4$ (x = 0, 0.05 and **0.25**) catalysts. Reaction condition: 2000 ppm CH₄, 10 vol. % O_2 , and N_2 as the balance gas, with a total flow rate of 150 mL/min, corresponding to a GHSV about $36,000 \text{ mL} \cdot \text{h}^{-1} \cdot \text{g}^{-1}$. Figure S2. TEM images of the $CoCr_{1.80}V_{0.20}O_4$ catalyst. **Figure S3.** XRD patterns of the Co_3O_4 , CrO_x and VO_x catalysts. **Figure S4.** CH₄ conversion (A) and CH₄ specific reaction rate (B) as a function of temperature over the Co_3O_4 , CrO_x and VO_x catalysts. Reaction condition: 2000 ppm CH₄, 10 vol. % O_2 , and N_2 as the balance gas, with a total flow rate of 150 mL/min, corresponding to a GHSV about 36,000 mL·h⁻¹·g⁻¹.