## **Supporting Information for:**

# The distinguished roles with various vanadium loadings of $CoCr_{2-x}V_xO_4$ (x=0-0.20) for methane combustion

Jinghuan Chen <sup>†</sup>, Wenbo Shi <sup>†</sup>, Shijian Yang <sup>†</sup>, Hamidreza Arandiyan <sup>†</sup>, Junhua Li \*, <sup>†</sup>, <sup>‡</sup>

<sup>+</sup> School of Environment, Tsinghua University, Beijing, 100084, China

<sup>‡</sup> State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC),

Beijing, 100084, China

# Number of Supporting Information pages (including this title page): 6

#### Results and discussion about figures in the Supporting Information (p. S2)

## List of Figures (p. S3-S6):

**Figure S1**: Methane conversion as a function of temperature over the  $CoCr_{2-x}V_xO_4$  (x = 0, 0.05 and **0.25**) catalysts.

**Figure S2**: TEM images of the  $CoCr_{1.80}V_{0.20}O_4$  catalyst.

**Figure S3**: XRD patterns of the  $Co_3O_4$ ,  $CrO_x$  and  $VO_x$  catalysts.

**Figure S4:** CH<sub>4</sub> conversion (A) and CH<sub>4</sub> specific reaction rate (B) as a function of the temperature over the  $Co_3O_4$ ,  $CrO_x$  and  $VO_x$  catalysts.

<sup>\*</sup> Corresponding author e-mail: lijunhua@tsinghua.edu.cn

#### Results and discussion about figures in the Supporting Information

The  $CoCr_{1.75}V_{0.25}O_4$  catalyst was prepared and investigated for methane combustion. Figure S1 shows the catalytic activity of the  $CoCr_{1.75}V_{0.25}O_4$  catalyst as a function of the reaction temperature. For comparison purpose, the activity of the  $CoCr_2O_4$  and  $CoCr_{1.95}V_{0.05}O_4$  was also given. It can be observed that further vanadium doping significantly decreased the activity, the methane conversion at 700 °C over  $CoCr_{1.75}V_{0.25}O_4$  was as low as 21%.

Transmission electron microscopy (TEM) was collected on a JEOL JEM 2010 microscope operating at 200 kV equipped with an energy dispersive X-ray (EDX) system. As shown in Figure S2, vanadium oxides cannot be observed even on well dispersed particles of the  $CoCr_{1.80}V_{0.20}O_4$  sample.

For better comparison, pure oxides of cobalt, chromium and vanadium were prepared using the similar procedures with the  $CoCr_{2-x}V_xO_4$  catalysts, and their catalytic performance, BET surface areas and XRD patterns were also investigated. As shown in Figure S3, the  $VO_x$  was combined phases of  $V_2O_5$  (JCPDS 41-1426),  $VO_2$  (PDF 43-1051) and  $V_6O_{13}$  (PDF 43-1050), while chromium and cobalt oxides were pure phase as expected according to  $Cr_2O_3$  (JCPDS 6-0504) and  $Co_3O_4$  (JCPDS 42-1467), respectively. The specific surface area was 9.5, 116.9 and 1.5 m<sup>2</sup>/g for  $VO_x$ ,  $CrO_x$  and  $Co_3O_4$ , respectively. Figure S4 shows the activity of the three oxides. Apparently, methane conversion over  $CrO_x$  was better than  $Co_3O_4$ , however, if we take the surface area into account, the specific reaction rate of  $Co_3O_4$  was much higher than that of the  $CrO_x$  catalyst. In addition,  $VO_x$  showed nearly no activity towards methane combustion.



**Figure S1.** Methane conversion as a function of temperature over the  $CoCr_{2-x}V_xO_4$  (x = 0, 0.05 and **0.25**) catalysts. Reaction condition: 2000 ppm CH<sub>4</sub>, 10 vol. %  $O_2$ , and  $N_2$  as the balance gas, with a total flow rate of 150 mL/min, corresponding to a GHSV about  $36,000 \text{ mL} \cdot \text{h}^{-1} \cdot \text{g}^{-1}$ .



Figure S2. TEM images of the  $CoCr_{1.80}V_{0.20}O_4$  catalyst.



**Figure S3.** XRD patterns of the  $Co_3O_4$ ,  $CrO_x$  and  $VO_x$  catalysts.



**Figure S4.** CH<sub>4</sub> conversion (A) and CH<sub>4</sub> specific reaction rate (B) as a function of temperature over the  $Co_3O_4$ ,  $CrO_x$  and  $VO_x$  catalysts. Reaction condition: 2000 ppm CH<sub>4</sub>, 10 vol. %  $O_2$ , and  $N_2$  as the balance gas, with a total flow rate of 150 mL/min, corresponding to a GHSV about 36,000 mL·h<sup>-1</sup>·g<sup>-1</sup>.