Crystal Structure Report for Zhou19 C₃₂H₄₆N₄O₃PdS + CH₂Cl₂

Report Prepared for: Xiaoyuan Zhou and Mr. Richard Jordan

March, 2010

Ian M. Steele (steele@geosci.uchicago.edu) X-ray Laboratory, Searle B013, 773-834-5861 Department of Chemistry The University of Chicago 5735 S. Ellis Ave. Chicago, Il 60637

Crystallographic Experimental Section

Data Collection

An irregular broken fragment (0.12 x 0.12 x 0.08 mm) was selected under a stereo-microscope while immersed in Fluorolube oil to avoid possible reaction with air. The crystal was removed from the oil using a tapered glass fiber that also served to hold the crystal for data collection. The crystal was mounted and centered on a Bruker SMART APEX system at 100 K. There was considerable difficulty to find a crystal with sharp diffraction spots. Large crystal were always poor, and finally a small crystal was found which was good but not great. Frames separated in reciprocal space were obtained and provided an orientation matrix and initial cell parameters. Final cell parameters were obtained from the full data set.

A "full sphere" data set was obtained which samples approximately all of reciprocal space to a resolution of 0.84 Å using 0.3° steps in ω using 10 second integration times for each frame. Data collection was made at 100 K. Integration of intensities and refinement of cell parameters were done using SAINT [1]. Absorption corrections were applied using SADABS [1] based on redundant diffractions.

Structure solution and refinement

The space group was determined as P1(bar) based on systematic absences and intensity statistics. Direct methods were used to locate the Pd atom and some C atoms from the E-map. Repeated difference Fourier maps allowed recognition of all expected C, N, O and S atoms. CH_2Cl_2 solvent is present but shows considerable positional disorder; one Cl atom was spit into two with occupancies of 0.41 and 0.59. Two C-C₃ units of the main molecule which are close to the solvent also show considerable disorder, and it is most probable that this is due to interaction with the solvent. Final refinement was anisotropic for all non-H atoms and isotropic-riding for H atoms. No anomalous bond lengths or other thermal parameters were noted. All ORTEP diagrams have been drawn with 50% probability ellipsoids.

Equations of interest:

$$R_{int} = \Sigma |F_o^2 - \langle F_o^2 \rangle | / \Sigma |F_o^2|$$

$$\mathbf{R}\mathbf{1} = \Sigma \mid \mid \mathbf{F}_{\mathrm{o}} \mid - \mid \mathbf{F}_{\mathrm{c}} \mid \mid / \Sigma \mid \mathbf{F}_{\mathrm{o}} \mid$$

wR2 = $[\Sigma [w (F_o^2 - F_c^2)^2] / \Sigma [w (F_o^2)^2]]^{1/2}$ where: w = q / $\sigma^2 (F_o^2) + (aP)^2 + bP$; q, a, b, P as defined in [1]

GooF = S =
$$[\Sigma [w (F_o^2 - F_c^2)^2] / (n-p)^{1/2}$$

n = number of independent reflections;
p = number of parameters refined.

References

[1] All software and sources of scattering factors are contained in the SHELXTL (version 5.1) program library (G. Sheldrick, Bruker Analytical X-ray Systems, Madison, WI).

Table 1. Crystal and structure refiner	ment for Zhou19.			
Identification Code	Zhou19			
Empirical formula	$C_{32}H_{46}N_4O_3PdS + C_3$	H_2Cl_2		
Formula weight	758.11			
Temperature	100 K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space Group	P1(bar)			
Unit cell dimensions	a = 11.319(4) Å	$\alpha = 75.514(5)^{\circ}$		
	b = 11.668(4) Å	$\beta = 85.177(5)^{\circ}$		
	c = 16.185(5) Å	$\gamma = 63.834(5)^{\circ}$		
Volume	1856.7(11) Å ³			
Z	2			
Density (calculated)	1.356 Mg/m^3			
Absorption coefficient	0.736 mm^{-1}			
F(000)	788			
Crystal size, color, habit	0.12 x 0.12 x 0.08 m	0.12 x 0.12 x 0.08 mm, clear, fragment		
Theta range for data collection	2.00 - 25.09 °			
Index ranges	$13 \le h \le 13, 13 \le k \le 13$	13, -19 ≤1 ≤ 19		
Reflections collected	17,916			
Independent reflections	$6,574 \ (R_{int} = 0.0372)$)		
Reflections with $I > 4\sigma(F_o)$	5,194			
Absorption correction	SADABS based on r	edundant diffractions		
Max. and min. transmission	1.0, 0.742			
Refinement method	Full-matrix least squ	ares on F^2		
Weighting scheme	$w = q \left[\sigma^2 \left(F_o^2\right) + \left(aP\right)\right]$	$()^{2} + bP]^{-1}$ where:		
	$P = (F_o^2 + 2F_c^2)/3, a =$	= 0.888, b = 0.0, q =1		
Data / restraints / parameters	6574 / 0 / 417			
Goodness-of-fit on F ²	1.019			
Final R indices [I > 2 sigma(I)]	R1 = 0.0621, wR2 =	0.1501		
R indices (all data)	R1 = 0.0801, wR2 =	0.1586		
Largest diff. peak and hole	1.359, -1.309 eÅ ⁻³			

	x	У	Z	U(eq)	SOF
C(1)	2935(6)	1317(6)	6141(4)	34(1)	
C(2)	2597(7)	546(9)	4833(5)	62(2)	
C(3)	3128(10)	1243(15)	4070(6)	119(5)	
C(4)	1128(7)	1046(9)	4699(5)	64(2)	
C(5)	3392(15)	-889(12)	4969(10)	202(10)	
C(6)	1697(5)	3711(6)	6508(4)	31(1)	
C(7)	361(6)	3665(7)	6654(4)	37(2)	
C(8)	2873(6)	4923(6)	5682(4)	40(2)	
C(9)	3421(10)	5224(13)	6392(6)	122(5)	
C(10)	3901(18)	3797(14)	5410(14)	266(14)	
C(11)	2433(10)	6104(12)	4977(7)	134(6)	
C(12)	6464(5)	761(5)	7867(3)	25(1)	
C(13)	7705(5)	333(6)	7507(4)	29(1)	
C(14)	8277(6)	1207(6)	7226(4)	33(1)	
C(15)	/623(6)	24/5(6)	/309(4)	33(1) 07(1)	
C(16)	6381(5) E700(E)	2919(6) 2050(5)	7671(3) 7046(2)	2/(1)	
C(17)	5/98(5) 2402(5)	2036(3)	/946(3)	23(1) 21(1)	
C(10)	340Z(3) 4507(5)	2651(5)	0123(3)	$2 \pm (1)$ 25(1)	
C(19)	4397(3)	2002(0)	9234(3)	23(1)	
C(20)	1176 (5)	3344 (J) 3344 (5)	947J(J) 8722(3)	23(1) 21(1)	
C(21)	252(5)	4695 (5)	8520(3)	21(1) 23(1)	
C(22)	-1079(5)	4959(6)	8555(3)	28(1)	
C(24)	-1470(5)	3959(6)	8770(4)	29(1)	
C(25)	-561(5)	2665(6)	8959(3)	28(1)	
C(26)	798(5)	2314(5)	8949(3)	23(1)	
C(27)	664 (5)	5800(5)	8295(4)	27(1)	
C(28)	52(6)	6736(6)	7422(4)	33(1)	
C(29)	273(6)	6577(6)	8984(4)	34(1)	
C(30)	1789(5)	869(5)	9202(4)	28(1)	
C(31)	1678(6)	293(6)	10139(4)	32(1)	
C(32)	1615(6)	78(6)	8630(4)	39(2)	
C(33)	5127(10)	2923(9)	1987(8)	95(4)	
Cl(1A)	4282(5)	3511(4)	2865(4)	84(2)	0.59
Cl(1B)	5610(30)	3144(13)	2859(8)	287(12)	0.41
Cl(2)	5779(4)	3805(3)	1279(4)	187(2)	
N(1)	2796(5)	925(6)	5590(3)	41(1)	
N(2)	1710(5)	4695(5)	5988(3)	33(1)	
N(3)	4577(4)	2536(4)	8373(3)	23(1)	
N(4)	2554(4)	3036(4)	8732(3)	20(1)	
0(1)	4709(4)	0(4)	7621(2)	30(1)	
0(2)	5317(4)	-266(4)	9090(2)	30(1)	
0(3)	6830(4)	-1669(4)	8214(3)	33(1)	
Pd(1)	3167(1)	1997(1)	7107(1)	23(1)	
S(1)	5784(1)	-398(1)	8251(1)	26(1)	

Table 2. Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å² x 10^3] for Zhou19. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(1) - N(1)	1 149(7)	C(18) - Pd(1)	2 061 (5)
C(1) = Pd(1)	2 004(6)	C(10) - N(3)	$1 \ 173(7)$
C(1) = FO(1)	2.004(0)	C(19) - R(3)	1 = -1111111 -
C(2) = N(1)	1,400(0)	C(19) - C(20)	1.327(7)
C(2) = C(5)	1.477(14)	C(20) - N(4)	1.482(6)
C(2) - C(4)	1.515(10)	C(21)-C(26)	1.403(8)
C(2)-C(3)	1.533(14)	C(21)-C(22)	1.425(7)
C(6)-N(2)	1.248(8)	C(21)-N(4)	1.439(6)
C(6)-C(7)	1.533(8)	C(22)-C(23)	1.398(8)
C(6)-Pd(1)	2.019(6)	C(22)-C(27)	1.510(8)
C(8)-C(10)	1.460(12)	C(23)-C(24)	1.380(8)
C(8) - C(11)	1,466(10)	C(24) - C(25)	1,373(8)
C(8) - N(2)	1,477(8)	C(25) - C(26)	1,406(7)
C(8) - C(9)	1 530(12)	C(26) - C(30)	1 528(8)
C(12) = C(17)	1 393(8)	C(23) = C(29)	1,520(0) 1,527(8)
C(12) = C(13)	1 397(7)	C(27) = C(28)	1,527(0) 1,547(8)
C(12) = C(13)	1 700(0)	C(27) = C(28)	1.547(0)
C(12) = S(1)	1.796(6)	C(30) = C(31)	1.516(8)
C(13) - C(14)	1.403(8)	C(30) = C(32)	1.538(8)
C(14) - C(15)	1.368(9)	C(33) - CL(2)	1.689(11)
C(15)-C(16)	1.400(8)	C(33)-C1(1A)	1.757(13)
C(16)-C(17)	1.400(8)	O(1)-S(1)	1.487(4)
C(17)-N(3)	1.433(7)	O(1)-Pd(1)	2.204(4)
C(18)-N(4)	1.330(6)	O(2)-S(1)	1.435(4)
C(18)-N(3)	1.361(7)	O(3)-S(1)	1.445(4)
N(1)-C(1)-Pd(1)	179.6(6)	C(22)-C(21)-N(4)	117.9(5)
N(1) - C(2) - C(5)	107.5(7)	C(23)-C(22)-C(21)	116.4(5)
N(1)-C(2)-C(4)	107.5(6)	C(23)-C(22)-C(27)	120.8(5)
C(5)-C(2)-C(4)	116.1(10)	C(21)-C(22)-C(27)	122.8(5)
N(1)-C(2)-C(3)	107.3(7)	C(24)-C(23)-C(22)	121.5(5)
C(5)-C(2)-C(3)	108.9(10)	C(25)-C(24)-C(23)	121.0(5)
C(4)-C(2)-C(3)	109.1(7)	C(24)-C(25)-C(26)	121.2(5)
N(2)-C(6)-C(7)	116.8(5)	C(21)-C(26)-C(25)	116.9(5)
N(2)-C(6)-Pd(1)	131.7(4)	C(21)-C(26)-C(30)	122.9(5)
C(7) - C(6) - Pd(1)	111.0(4)	C(25)-C(26)-C(30)	120.2(5)
C(10) -C(8) -C(11)	110.9(11)	C(22)-C(27)-C(29)	111.0(5)
C(10) - C(8) - N(2)	112.1(/)	C(22) - C(27) - C(28)	111.1(5)
C(11) - C(8) - N(2)	107.9(6)	C(29) = C(27) = C(28)	109.8(5)
C(10) = C(8) = C(9)	109.0(12)	C(31) - C(30) - C(20)	111 6(5)
V(2) = C(8) = C(9)	109.0(0)	C(31) = C(30) = C(32)	111.0(3)
C(17) = C(12) = C(13)	119.9(5)	C(20) = C(30) = C(32)	120 2(6)
C(17) - C(12) - S(1)	121.4(4)	C(1) - N(1) - C(2)	174.6(7)
C(13) - C(12) - S(1)	118.7(4)	C(6) - N(2) - C(8)	127.3(5)
C(12) - C(13) - C(14)	119.9(5)	C(18) - N(3) - C(17)	126.6(4)
C(15) - C(14) - C(13)	120.1(5)	C(18) - N(3) - C(19)	113.4(4)
C(14) - C(15) - C(16)	120.8(6)	C(17) - N(3) - C(19)	118.7(4)
C(17) - C(16) - C(15)	119.5(5)	C(18) -N(4) -C(21)	126.5(4)
C(12)-C(17)-C(16)	119.9(5)	C(18)-N(4)-C(20)	114.0(4)
C(12)-C(17)-N(3)	123.0(5)	C(21)-N(4)-C(20)	119.5(4)
C(16)-C(17)-N(3)	116.8(5)	S(1)-O(1)-Pd(1)	127.4(2)
N(4)-C(18)-N(3)	107.1(4)	C(1)-Pd(1)-C(6)	84.8(2)
N(4)-C(18)-Pd(1)	128.3(4)	C(1)-Pd(1)-C(18)	178.3(2)
N(3)-C(18)-Pd(1)	123.7(4)	C(6)-Pd(1)-C(18)	96.3(2)
N(3)-C(19)-C(20)	102.1(4)	C(1)-Pd(1)-O(1)	86.8(2)
N(4)-C(20)-C(19)	102.5(4)	C(6) - Pd(1) - O(1)	171.49(18)
C(26)-C(21)-C(22)	123.0(5)	C(18)-Pd(1)-O(1)	92.15(18)
C(26)-C(21)-N(4)	119.0(5)	O(2) - S(1) - O(3)	115.1(2)

O(2)−S(1)−O(1)	113.1(2)	O(3)-S(1)-C(12)	105.9(2)
O(3)-S(1)-O(1)	110.5(2)	O(1)-S(1)-C(12)	104.4(2)
O(2)-S(1)-C(12)	107.0(2)		

Table 4. Anisotropic displacement parameters $[\text{\AA}^2 \times 10^3]$ for Zhou19. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{\AA}^2a^{*2}U_{11}+\ldots+2\text{\AA}a^{*}b^{*}U_{12}]$

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(1)	21(3)	43(4)	37(4)	-12(3)	1(3)	-12(3)
C(2)	36(4)	97(6)	64(5)	-57(5)	-4(4)	-18(4)
C(3)	70(7)	273(17)	72(7)	-99(9)	38(5)	-103(9)
C(4)	44(4)	117(7)	55(5)	-37(5)	0(4)	-47(5)
C(5)	180(14)	123(10)	251(17)	-144(12)	-155(13)	60(10)
C(6)	19(3)	43(4)	33(3)	-19(3)	1(2)	-11(3)
C(7)	24(3)	59(4)	37(4)	-18(3)	3(3)	-23(3)
C(8)	31(3)	42(4)	43(4)	-7(3)	13(3)	-16(3)
C(9)	102(8)	223(14)	78(7)	48(8)	-40(6)	-141(10)
C(10)	270(20)	171(14)	490(30)	-238(19)	340(20)	-187(15)
C(11)	74(7)	155(11)	138(10)	101(9)	-58(7)	-81(8)
C(12)	21(3)	29(3)	27(3)	-4(2)	2(2)	-16(3)
C(13)	17(3)	34(3)	36(3)	-13(3)	4(2)	-10(3)
C(14)	20(3)	49(4)	37(3)	-12(3)	8(3)	-21(3)
C(15)	24(3)	51(4)	3/(3)	-8(3)	6(3)	-29(3)
C(16)	20(3)	33(3)	30(3)	-6(3)	0(2)	-15(3)
C(17)	14(3)	31(3)	28(3)	-/(2)	-1(2)	-13(2)
C(18)	20(3)	21(3)	2/(3)	-4(2)	$\perp (2)$	-13(2)
C(19)	21(3)	31(3)	2/(3)	-9(2)	3(2)	-16(2) 15(2)
C(20)	21(3)	30(3)	20(3)	-12(2)	4 (Z) 2 (2)	-15(2)
C(21)	12(3)	30(3)	22(3)	-0(2)	2(2) 1(2)	-0(2)
C(22)	24(3)	10(3)	24(3)	-4(2)	$\perp (2)$	-0(2)
C(23)	15(3)	$\Delta \Delta (\Delta)$	27(3) 31(3)	-12(3)	$\frac{1}{3}(2)$	-4(2)
C(25)	24(3)	38(3)	29(3)	-7(3)	3(2)	-19(3)
C(25)	19(3)	31 (3)	25(3)	-11(2)	2(2)	-13(2)
C(27)	21(3)	27(3)	23(3)	-7(3)	2(2)	-11(2)
C(28)	29(3)	27(3)	39(4)	-6(3)	1(3)	-10(3)
C(29)	34(3)	33(3)	39(4)	-10(3)	4(3)	-17(3)
C(30)	20(3)	28(3)	43(4)	-12(3)	7(3)	-17(2)
C(31)	20(3)	33(3)	45(4)	-8(3)	-3(3)	-13(3)
C(32)	40(4)	34(4)	49(4)	-16(3)	17(3)	-20(3)
C(33)	64(6)	47(5)	182(12)	-29(6)	2(7)	-29(5)
Cl(1A)	92(3)	61(2)	109(4)	13(2)	-45(3)	-50(2)
Cl(1B)	630(40)	145(11)	156(11)	20(9)	-115(19)	-236(19)
Cl(2)	174(4)	55(2)	316(6)	-42(3)	119(4)	-55(2)
N(1)	28(3)	57(4)	43(3)	-26(3)	2(2)	-16(3)
N(2)	25(3)	39(3)	31(3)	-6(2)	2(2)	-13(2)
N(3)	18(2)	27(2)	28(3)	-8(2)	2(2)	-13(2)
N(4)	15(2)	25(2)	25(2)	-11(2)	4(2)	-12(2)
0(1)	23(2)	28(2)	40(2)	-9(2)	-2(2)	-12(2)
0(2)	35(2)	33(2)	29(2)	-6(2)	4(2)	-21(2)
0(3)	24(2)	26(2)	48(3)	-10(2)	3(2)	-10(2)
Pd(1)	17(1)	30(1)	27(1)	-11(1)	3(1)	-13(1)
S(1)	20(1)	26(1)	35(1)	-7(1)	2(1)	-12(1)

	Х	У	Z	U(eq)
H(3A)	2692	2193	4026	179
H(3B)	2951	1064	3545	179
H(3C)	4079	919	41.52	179
H(4A)	753	745	5229	96
H(4B)	968	707	4245	96
H(4C)	714	2009	4535	96
H(5A)	4310	-1114	5097	303
H (5B)	3346	-1161	4451	303
H(5C)	3047	-1344	5448	303
H(7A)	-345	4563	6539	55
H(7B)	327	3212	7247	55
H(7C)	248	3190	6269	55
H(9A)	4211	5344	6197	183
H(9R)	3647	4491	6898	183
H(9C)	2755	6029	6535	183
H(10A)	3675	3801	4838	200
H(10B)	3075	2983	5811	399
H(10C)	1713	2905	5398	399
H(11A)	1969	5997	1539	200
п(11д) п(11д)	3198	6233	4730	200
п(IID) п(11С)	1027	6233	4/30	200
п(IIC) п(12)	2160	-540	J195 7452	200
п(13)	0110	-549	6070	10
п(14) п(15)	9119	3063	0979	40
п(15)	5027	2700	7110	40
П(10) П(10)	1027	2200	0202	20
П (19А) Ц (10Р)	4927 5146	1906	9202	29
п(19D) п(20л)	2024	2570	10012	29
П (20А)	2760	2379	0521	20
п(206)	2700	4004 504 <i>C</i>	9331	20
H(23)	-1/29	2846	8428	34
H(24)	-2303	41/0	0/0/	24
H(23)	-655	1994 5410	9099	24
$\Pi(27)$	205	5410 6255	6070	32
H (20A)	200	0200	7200	49
H(28B)	291	/4/1 7075	7300	49
H(28C)	-909	/0/5	/435	49
H(29A)	-08/	0977	9028	5Z 52
H(29B)	578	/268	8834	52
H(29C)	679	5984	9533	52
H(3U)	2093	823	9118	34
н (ЗІА) н (З1Б)	/91 1041	34/	10241	4 ð 4 ð
н(этв)	1041	/90	10486	4 ð
н(этс)	2329	-628	10295	48
H(32A)	2300	-829	8//8	59
н (32В)	108/	4/9	8030	59
H(32C)	/46	18	8/16	59
H(33A)	5854	2046	2215	114
н(ЗЗВ)	4513	2/88	1664	$\perp \perp 4$

Table 5. Hydrogen coordinates [x $10^4]$ and isotropic displacement parameters $[{\rm \AA}^2~x~10^3]$ for Zhou19.

C(17)-C(12)-C(13)-C(14)	0.1(8)	N(4)-C(18)-N(3)-C(19)	8.8(6)
S(1)-C(12)-C(13)-C(14)	-178.0(4)	Pd(1)-C(18)-N(3)-C(19)	-161.1(4)
C(12)-C(13)-C(14)-C(15)	0.3(9)	C(12)-C(17)-N(3)-C(18)	-65.5(7)
C(13)-C(14)-C(15)-C(16)	-0.1(9)	C(16)-C(17)-N(3)-C(18)	120.4(6)
C(14)-C(15)-C(16)-C(17)	-0.5(9)	C(12)-C(17)-N(3)-C(19)	100.2(6)
C(13)-C(12)-C(17)-C(16)	-0.7(8)	C(16)-C(17)-N(3)-C(19)	-73.8(6)
S(1)-C(12)-C(17)-C(16)	177.4(4)	C(20)-C(19)-N(3)-C(18)	-10.5(6)
C(13)-C(12)-C(17)-N(3)	-174.5(5)	C(20)-C(19)-N(3)-C(17)	-178.1(4)
S(1)-C(12)-C(17)-N(3)	3.5(7)	N(3)-C(18)-N(4)-C(21)	176.8(5)
C(15) - C(16) - C(17) - C(12)	0.9(8)	Pd(1)-C(18)-N(4)-C(21)	-13.9(8)
C(15)-C(16)-C(17)-N(3)	175.1(5)	N(3)-C(18)-N(4)-C(20)	-3.1(6)
N(3)-C(19)-C(20)-N(4)	7.7(5)	Pd(1)-C(18)-N(4)-C(20)	166.2(4)
C(26)-C(21)-C(22)-C(23)	-0.3(8)	C(26)-C(21)-N(4)-C(18)	81.1(7)
N(4)-C(21)-C(22)-C(23)	-177.1(5)	C(22)-C(21)-N(4)-C(18)	-101.9(6)
C(26)-C(21)-C(22)-C(27)	178.6(5)	C(26)-C(21)-N(4)-C(20)	-99.0(6)
N(4)-C(21)-C(22)-C(27)	1.8(7)	C(22)-C(21)-N(4)-C(20)	77.9(6)
C(21)-C(22)-C(23)-C(24)	-0.3(8)	C(19)-C(20)-N(4)-C(18)	-3.3(6)
C(27)-C(22)-C(23)-C(24)	-179.2(5)	C(19)-C(20)-N(4)-C(21)	176.8(4)
C(22)-C(23)-C(24)-C(25)	0.1(9)	N(1)-C(1)-Pd(1)-C(6)	-85(98)
C(23)-C(24)-C(25)-C(26)	0.7(9)	N(1)-C(1)-Pd(1)-C(18)	44(100)
C(22)-C(21)-C(26)-C(25)	1.0(8)	N(1)-C(1)-Pd(1)-O(1)	94(98)
N(4)-C(21)-C(26)-C(25)	177.8(5)	N(2)-C(6)-Pd(1)-C(1)	-94.8(6)
C(22)-C(21)-C(26)-C(30)	-177.3(5)	C(7)-C(6)-Pd(1)-C(1)	76.4(4)
N(4)-C(21)-C(26)-C(30)	-0.5(8)	N(2)-C(6)-Pd(1)-C(18)	86.5(6)
C(24)-C(25)-C(26)-C(21)	-1.2(8)	C(7)-C(6)-Pd(1)-C(18)	-102.3(4)
C(24)-C(25)-C(26)-C(30)	177.2(5)	N(2)-C(6)-Pd(1)-O(1)	-102.6(14)
C(23)-C(22)-C(27)-C(29)	66.1(7)	C(7)-C(6)-Pd(1)-O(1)	68.6(15)
C(21)-C(22)-C(27)-C(29)	-112.7(6)	N(4)-C(18)-Pd(1)-C(1)	-63(8)
C(23)-C(22)-C(27)-C(28)	-56.3(7)	N(3)-C(18)-Pd(1)-C(1)	104(8)
C(21)-C(22)-C(27)-C(28)	124.9(5)	N(4)-C(18)-Pd(1)-C(6)	65.4(5)
C(21)-C(26)-C(30)-C(31)	112.3(6)	N(3)-C(18)-Pd(1)-C(6)	-126.9(5)
C(25)-C(26)-C(30)-C(31)	-66.0(6)	N(4)-C(18)-Pd(1)-O(1)	-113.2(5)
C(21)-C(26)-C(30)-C(32)	-123.3(6)	N(3)-C(18)-Pd(1)-O(1)	54.5(4)
C(25)-C(26)-C(30)-C(32)	58.4(7)	S(1)-O(1)-Pd(1)-C(1)	160.1(3)
Pd(1)-C(1)-N(1)-C(2)	123(95)	S(1)-O(1)-Pd(1)-C(6)	167.9(13)
C(5)-C(2)-N(1)-C(1)	150(6)	S(1)-O(1)-Pd(1)-C(18)	-21.1(3)
C(4)-C(2)-N(1)-C(1)	-84(7)	Pd(1)-O(1)-S(1)-O(2)	68.7(3)
C(3)-C(2)-N(1)-C(1)	33(7)	Pd(1)-O(1)-S(1)-O(3)	-160.7(3)
C(7)-C(6)-N(2)-C(8)	-174.4(5)	Pd(1)-O(1)-S(1)-C(12)	-47.3(3)
Pd(1)-C(6)-N(2)-C(8)	-3.7(10)	C(17)-C(12)-S(1)-O(2)	-46.1(5)
C(10)-C(8)-N(2)-C(6)	48.5(14)	C(13)-C(12)-S(1)-O(2)	131.9(4)
C(11)-C(8)-N(2)-C(6)	170.8(8)	C(17)-C(12)-S(1)-O(3)	-169.3(4)
C(9)-C(8)-N(2)-C(6)	-73.4(9)	C(13)-C(12)-S(1)-O(3)	8.7(5)
N(4)-C(18)-N(3)-C(17)	175.2(5)	C(17)-C(12)-S(1)-O(1)	74.0(5)
Pd(1)-C(18)-N(3)-C(17)	5.3(7)	C(13)-C(12)-S(1)-O(1)	-107.9(5)