Supporting Materials

A regioselective synthesis of fused oxazepinone scaffolds through one-pot Smiles rearrangement tandem reaction

Yanli Liu, ${ }^{a}$ Chunxiao Chu, ${ }^{a}$ Aiping Huang, ${ }^{a}$ Chunjing Zhan, ${ }^{a}$ Ying Ma ${ }^{a}$ and Chen Ma ${ }^{a, b} *$
${ }^{a}$ School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P R China. E-mail: chenma@sdu.edu.cn
${ }^{b}$ State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P R China

Experimental Section

General P1

General Experimental Procedure for the Synthesis of (3a-1), (4b-m), (6a-d). P1

Details of Crystal Data and Structure Refinement for Compound 4d. P2
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compound 3a-1, 4b-m, 6a-d. P3-P32

General

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance $400(400 \mathrm{MHz})$ or $300(300 \mathrm{MHz})$ spectrometer, using CDCl_{3} as solvent and tetramethylsilane (TMS) as internal standard. Melting points were determined on an XD-4 digital micro melting point apparatus. HRMS spectra were determined on a Q-TOF6510 spectrograph (Agilent). Single crystal X-ray diffraction were made on a Rigaku RAXIS-SPIDER IP diffractometer at 50 kV and 20 mA and data collection was performed at 298 K by using graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA)$.

General Experimental Procedure for the Synthesis of (3a-l), (4b-m), (6a-d). Representative Procedure for the Synthesis of 10-ethyl-7-nitrodibenzo[b,f][1,4]oxazepin-11(10H)-one (3b). To a solution of N-ethyl salicylamide ($150 \mathrm{mg}, 0.9 \mathrm{mmol}$) in dry DMF (10 mL) were added 1,2-difluoro-4-nitrobenzene ($120 \mathrm{mg}, 0.8 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(310 \mathrm{mg}, 2.3 \mathrm{mmol})$, then the mixture was stirred for 1 h at $80^{\circ} \mathrm{C}$ (oil bath), and then $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added and the mixture was extracted with $\operatorname{EtOAc}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with sat. brine $(2 \times 20$ mL), dried over MgSO_{4}, flitered, and evaporated in vocuo. The crude product was purified by
column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=5: 1)$ to afford the desired product $\mathbf{3 b}$ as a Pale yellow oil ($207 \mathrm{mg}, 96 \%$).

Table 1. Details of Crystal Data and Structure Refinement for Compound 4d

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
deg
deg

90 deg
Volume
Z
Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
$=<$ l $=<16$
Reflections collected / unique
Completeness to theta $=23.33$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on \mathbf{F}^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

$$
c=15.200(2) A \quad \text { gamma }=
$$

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
264.28

298 K
0.71073 A
orthorhombic
Pbca
$\mathrm{a}=11.4870(18) \mathrm{A} \quad$ alpha $=90$
$b=14.689(2) A \quad$ beta $=90$
2564.7(7) A^{3}
7.0
$1.369 \mathrm{Mg} / \mathrm{m}^{3}$
$0.092 \mathrm{~mm}^{-1}$
1104.0
$0.15 \times 0.1 \times 0.08 \mathrm{~mm}$
2.62 to 23.33 deg
$-11=<h=<12, \quad-16=<k=<16, \quad-12$
$10308 / 1861$ [R (int) = 0.0691]
99.9\%

Semi-empirical from equivalents
0.9927 and 0.9863

Full-matrix least-squares on F^{2}
1861/0/182
0.985
$R 1=0.0420, w R 2=0.0975$
R1 = 0.0762, \quad wR2 $=0.1159$
0.157 and $-0.147 e^{-3}$
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compound 3a-l, 4b-m, 6a-d

$\stackrel{\infty}{\stackrel{\infty}{\sim}}$

$\stackrel{\square}{\infty}$

(

