Supporting Materials

A regioselective synthesis of fused oxazepinone scaffolds through one-pot Smiles rearrangement tandem reaction

Yanli Liu,^a Chunxiao Chu,^a Aiping Huang,^a Chunjing Zhan,^a Ying Ma^a and Chen Ma^{a,b}*

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P R China. E-mail: chenma@sdu.edu.cn

^bState Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P R China

Experimental Section

General	P1
General Experimental Procedure for the Synthesis of (3a-l), (4b-m), (6a-d).	P1
Details of Crystal Data and Structure Refinement for Compound 4d.	P2
¹ H NMR and ¹³ C NMR Spectra of Compound 3a-l, 4b-m, 6a-d.	P3-P32

General

¹H NMR spectra were recorded on a Bruker Avance 400 (400 MHz) or 300 (300 MHz) spectrometer, using CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. Melting points were determined on an XD-₄ digital micro melting point apparatus. HRMS spectra were determined on a Q-TOF6510 spectrograph (Agilent). Single crystal X-ray diffraction were made on a Rigaku RAXIS-SPIDER IP diffractometer at 50 kV and 20 mA and data collection was performed at 298 K by using graphite-monochromated Mo-K α radiation (λ =0.71073Å).

General Experimental Procedure for the Synthesis of (3a-l), (4b-m), (6a-d). Representative Procedure for the Synthesis of 10-ethyl-7-nitrodibenzo[b,f][1,4]oxazepin-11(10H)-one (3b). To a solution of *N*-ethyl salicylamide (150 mg, 0.9 mmol) in dry DMF (10 mL) were added 1,2-difluoro-4-nitrobenzene (120 mg, 0.8 mmol) and K_2CO_3 (310 mg, 2.3 mmol), then the mixture was stirred for 1 h at 80 °C (oil bath), and then H₂O (30 mL) was added and the mixture was extracted with EtOAc(3×25 mL). The combined organic layers were washed with sat. brine (2×20 mL), dried over MgSO₄, flitered, and evaporated in vocuo. The crude product was purified by column chromatography on silica gel (PE/EtOAc = 5:1) to afford the desired product **3b** as a Pale yellow oil (207 mg, 96%).

Table 1. Details of Crystal Data and Structur	e Refinement for Compound 4d
Empirical formula	$C_{16} H_{12} N_2 O_2$
Formula weight	264.28
Temperature	298 K
Wavelength	0.71073 A
Crystal system	orthorhombic
Space group	Pbca
Unit cell dimensions	a = 11.4870(18) A alpha = 90
deg	
	b = 14.689(2) A beta = 90
deg	
	c = 15.200(2) A gamma =
90 deg	
Volume	2564.7 (7) A ³
Z	7.0
Calculated density	1.369 Mg/m ³
Absorption coefficient	0.092 mm ⁻¹
F(000)	1104.0
Crystal size	0.15 x 0.1 x 0.08 mm
Theta range for data collection	2.62 to 23.33 deg
Limiting indices	-11 =< h =< 12, -16 =< k =< 16, -12
=< l =< 16	
Reflections collected / unique	10308 / 1861 [R (int) = 0.0691]
Completeness to theta = 23.33	99.9%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9927 and 0.9863
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1861/0/182
Goodness-of-fit on F ²	0.985
Final R indices [I>2sigma(I)]	R1 = 0.0420, wR2 = 0.0975
R indices (all data)	R1 = 0.0762, WR2 = 0.1159
Largest diff. peak and hole	0.157 and - 0.147 e ⁻³

Table 1. Details of Crystal Data and Structure Refinement for Compound 4d

¹H NMR and ¹³C NMR Spectra of Compound 3a-l, 4b-m, 6a-d

