Supplementary Data

Hybrid Particle-Field Coarse-Grain Models for Biological Phospholipids

Antonio De Nicola ${ }^{a, b}$, Ying Zhao ${ }^{a}$, Toshihiro Kawakatsu ${ }^{c}$, Danilo Roccatano ${ }^{d}$ and Giuseppe Milano ${ }^{a, b_{*}}$
${ }^{a}$ Dipartimento di Chimica e Biologia, Università di Salerno, I-84084 via Ponte don Melillo Fisciano (SA), Italy
${ }^{b}$ IMAST Scarl-Technological District in Polymer and Composite Engineering, P.le Fermi 1, 80055 Portici (NA), Italy
${ }^{c}$ Department of Physics, Tohoku University, Aoba, Amaraki, Aoba-ku, Sendai 9808578, Japan
${ }^{\mathrm{d}}$ Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
AUTHOR EMAIL ADDRESS: gmilano@unisa.it

1. Coarse-graining scheme
2. Bonding parameters
3. Distribution of radius of gyration
4. Distribution of angle between tails

FigureS1. Coarse-graining mapping scheme for the DPPC and DOPC phospholipids. One coarsegrain bead correspond to four atoms.

Bonds are described by a harmonic potential $V_{\text {bond }}(R)$ type

$$
\begin{equation*}
V_{\text {bond }}(R)=\frac{1}{2} K_{\text {bond }}\left(R-R_{\text {bond }}\right)^{2} \tag{1}
\end{equation*}
$$

where $R_{\text {bond }}$ is the equilibrium distance and $K_{\text {bond }}$ is the force constant of the bond. The stiffness of the chains is taken into account by a harmonic potential $V_{\text {angle }}(\theta)$ depending of the cosine of angle between atoms, where θ is the angle between two successive bonds.

$$
\begin{equation*}
V_{\text {angle }}(\theta)=\frac{1}{2} K_{\text {angle }}\left\{\cos (\theta)-\cos \left(\theta_{0}\right)\right\}^{2} \tag{2}
\end{equation*}
$$

where $K_{\text {angle }}$ is the force constant and θ_{0} is the equilibrium bond angle.
Table S1. Parameters for bonding energetic term.

bonds	$\left.R_{\text {bond }} \mathbf{(n m}\right)$	$K_{\text {bond }}\left(\mathbf{k J} \mathbf{~ m o l}^{\mathbf{- 1}} \mathbf{~ n m}^{\mathbf{- 2}} \mathbf{)}\right.$
N-P	0.470	1250
P-G	0.470	1250
G-G	0.370	1250
G-C	0.470	1250
C-C	0.470	1250
D-C	0.470	1250

Table S2. Parameters for angle energetic term.

angle	$\left.\boldsymbol{\theta}_{\boldsymbol{o}} \mathbf{(d e g}\right)$	$K_{\text {angle }} \mathbf{(k J ~ m o l}^{\mathbf{- 1}} \mathbf{)}$
P-G-G	120	25.0
P-G-C	180	25.0
G-C-C	180	25.0
C-C-C	180	25.0
C-D-C	120	45.0
D-C-C	180	25.0

Figure S2. Distribution of radius of gyration for the Particle-Particle and Particle-Field simulations.

Figure S3. Distribution of angle between the two tails of the DPPC for Particle-Particle and Particle-Field simulations.

In the Figure S4 is shown the scheme to define the vectors \boldsymbol{a} and \boldsymbol{b}.

Figure 4. The vectors \boldsymbol{a} and \boldsymbol{b} are calculated, each, as the distance between two points identified by the first bead of type C and the last one.

