SUPPORTING INFORMATION

$\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$: A 14 -vertex $\mathrm{Sn} / \mathrm{Bi}$ Cluster embedding a Pd_{3} Triangle

Felicitas Lips, ${ }^{1}$ Rodolphe Clérac, ${ }^{2,3}$ Stefanie Dehnen ${ }^{1, *}$
${ }^{I}$ Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany, email: dehnen@chemie.uni-marburg.de; ${ }^{2}$ CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe "Matériaux Moléculaires Magnétiques", 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France; Université de Bordeaux, UPR 8641, Pessac, F-33600, France
${ }^{3}$ Université de Bordeaux, UPR 8641, Pessac, F-33600, France

Content:

1. Experimental Details
2. Details of the X-ray Diffraction Measurement, Structure Solution and Refinement
3. Energy Dispersive X-ray (EDX) Spectroscopy Analysis
4. Magnetic measurements
5. Electrospray Ionization Mass Spectrometry (ESI-MS) Investigations
6. Quantum Chemical Investigations
7. Investigations on the formation of compound 1
8. Microanalysis
9. References

1 Experimental Details

1.1 General

All manipulations and reactions were performed in an argon or nitrogen atmosphere using standard Schlenk or glovebox techniques. Ethylenediamine (en) (Aldrich, 99\%) and toluene (technical grade) were freshly distilled prior to use. [2.2.2]crypt [1] (Merck) and Bis[1,2bis(diphenylphosphino)ethane]palladium(0) (Aldrich) were dried in vacuum for 13 h . The precursor $[\mathrm{K}([2.2 .2] \mathrm{crypt})]_{2}\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right] \cdot$ en was prepared according to the literature.[2]

1.2 Synthesis of $[K([2.2 .2] c r y p t)]_{4}\left[P_{3} S_{3} B i_{6}\right]$

$193 \mathrm{mg}(0.125 \mathrm{mmol})[\mathrm{K}([2.2 .2] \mathrm{crypt})]_{2}\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right] \cdot$ en was weighed out into a Schlenk tube and then dissolved in en (3 mL). The color of this solution is dark-reddish brown. Another Schlenk tube was filled with $147 \mathrm{mg}(0.163 \mathrm{mmol})$ of Bis[1,2-bis(diphenylphosphino)ethane]palladium(0) and then suspended in toluene (1 mL). An orange suspension is obtained. The orange suspension was added to the dark-reddish brown solution while stirring powerfully. The reaction mixture was allowed to stirr for 3 hours. The dark brown reaction solution was filtered through a standard glass frit and carefully layered by toluene (4 mL). After 3 days black rhombus-like plates of $[\mathrm{K}([2.2 .2] \text { crypt })]_{4}\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]$ (1) formed at the wall of the Schlenk tube in approximately 15% yield based on the starting material. Semi-quantitative energy-dispersive X-ray spectroscopy (EDX) analyses of several crystals confirmed the composition of $\mathbf{1}$ (see below).

2 Details of the X-ray Diffraction Measurement, Structure Solution and Refinement

2.1 General

Single crystal X-ray diffraction data for $\mathbf{1}$ (Table S1) were collected on a Stoe IPDS2T diffractometer at 100 K with MoK_{α} radiation $(\lambda=0.71073 \AA)$. The structure was solved by direct methods and refined with full matrix least squares against F^{2} using SHELXS-97 und SHELXL-97 [3].

Table S1. X-ray measurement and structure solution of $\mathbf{1}$.

Compound	1
Empirical formula	$\mathrm{C}_{73.19} \mathrm{H}_{148.26} \mathrm{Bi}_{6} \mathrm{~K}_{4} \mathrm{~N}_{9.19} \mathrm{O}_{24} \mathrm{Pd}_{3} \mathrm{Sn}_{8}$
Formula weight $/ \mathrm{g} \cdot \mathrm{mol}^{-1}$	4220.21
Crystal color, shape	black rhombus-like plate
Crystal size $/ \mathrm{mm}^{3}$	$0.36 \times 0.09 \times 0.03$
Crystal system	triclinic
Space group	P-1
a /Å	13.825(3)
b / A	16.323(3)
c / A	27.335(6)
$\alpha{ }^{\circ}$	76.22(3)
$\beta 1{ }^{\circ}$	82.55(3)
γ^{\prime}	65.90(3)
V / \AA^{3}	5465(2)
Z	2
$\rho_{\text {calc }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	2.56
$\mu\left(\mathrm{Mo}_{K}\right) / \mathrm{mm}^{-1}$	12.1
2Θ range $/{ }^{\circ}$	9.22-54.33
Reflections measured	38203
Independent reflections	18832
R (int)	0.0932
Ind. reflections ($1>2 \sigma(1)$)	13080
Parameters	1314
Restraints	2245
$R_{1}(1>2 \sigma(l))$	0.0772
$w R_{2}$ (all data)	0.2058
GooF (all data)	0.966
Max. peak/hole /e ${ }^{-} \cdot \AA^{-3}$	2.95/-3.47
Absorption correction type [4]	numerical
Min. /Max. transmission	0.095, 0.411

2.2 Details of the structure refinement for Compound 1

Due to rotational disorder the electron density for three C atoms of the [2.2.2]crypt-fragment of the third $[\mathrm{K}([2.2 .2] \text { crypt })]^{+}$ion could not be localized. The influence of the disorder for the [2.2.2]cryptfragments of the fourth $[\mathrm{K}([2.2 .2] \mathrm{crypt})]^{+}$was much stronger so that the electron density could only be localized in parts. Therefore the electron density around the fourth potassium atom was fitted for the known structural fragment of [2.2.2]crypt and refined as fixed group. The potassium atom of this countercation is located close to the inversion center resulting in two orientations. Placing the potassium atom at the exact position of the inversion center resulted in remarkably higher isotropic displacement parameters and was therefore not maintained. In order to maintain the overall geometry of the disordered $[\mathrm{K}([2.2 .2] c r y p t)]^{+}$cations similar to the ordered species in the first refinement stages the appropriate SAME restraints were applied. However, in order to achieve a fully-anisotropic disorder model, it was necessary to enable some conformational freedom and to subtitute SAME restraints with an extensive set of soft DFIX restraints (all C-N bonds at $1.42(5) \AA, \mathrm{C}-\mathrm{C}$ at $1.54(5) \AA$, $\mathrm{C}-\mathrm{O}$ at $1.43(5) \AA, \mathrm{K}-\mathrm{N}$ at $2.95(5) \AA, \mathrm{K}-\mathrm{O}$ at $2.78(5) \AA$; for 1,3 -distances, in order to keep angles at values reasonable within $3 \sigma: \mathrm{N} \ldots \mathrm{C}$ at $2.5(1) \AA, \mathrm{C} \ldots \mathrm{O}$ at $2.5(1) \AA, \mathrm{C} \ldots \mathrm{C}$ at $2.4(1) \AA)$.
Numerous attempts to introduce different disorder models and to refine occupancies as free variables led to the following conclusions. In both disordered cations most plausible option is to introduce two disorder components. In case of one $[\mathrm{K}([2.2 .2] \mathrm{crypt})]^{+}$cation (with K 3 atom) for both disorder components occupancies should be fixed at 0.5 (also for both disorder components the same K atom position had to be assumed by the use of the corresponding EXYZ/EADP constraints). In case of the second cation (with K4 atom) it is better to refine the occupancies, adding to a full occupancy (the final refined occupancies are $0.54(2)$ and $0.46(2)$, respectively). In all cases a combination of EADP and ISOR constraints / SIMU restraints was necessary to achieve convergence.
All first stages of refinement often required the use of damping least-squares shifts, which was steadily removed at the end. Additionally, anti-bumping DFIX restraints ($-2.00(1) \AA$) had to be applied to some H...H distances. Also, in order to keep some minor disorder component atoms from shifting away their distances to the neighbouring major disorder component atoms had to be restrained (C88...C50, C82...C53, C81...C52, O27...O16, O29...O17).

Voids in the crystal structure seem to be occupied by disordered ethylenediamine molecules (it was also possible to remove them by use of a SQUEEZE [5] routine, however, in this model we do not introduce SQUEEZE). Two sites were found with disordered centrosymmetric en molecules (with N1N and N2N atoms, respectively). Occupancies for these molecules were refined as free variables to obtain the following final values: $0.73(4)$ and $0.46(7)$, respectively (the higher-occupancy en molecule was refined anisotropically). The resulting structure model does not contain any voids, which could accomodate disordered potassium cations - this clearly confirms the assumed anion charge of -4.
H atoms of the ordered [2.2.2]crypt-fragments/disordered en molecules were calculated using the HFIX 23 command. H atoms for the disordered K[2.2.2]crypt-countercation/amine H atoms from en
molecules have not been considered (for the cation H atoms in order to avoid the necessity to include restraints on H...H distances, which would affect other restraints).
The highest peak/hole of the final difference Fourier map $\left(2.95 \mathrm{e}^{-} \cdot \AA^{-3} /-3.47 \mathrm{e}^{-} \cdot \AA^{-3}\right)$ are located at 0.56 \AA from Sn 1 and at $0.68 \AA$ from Bi 2 , respectively. All first 40 maxima on the final difference Fourier map (down to $1.16 \mathrm{e}^{-} \cdot \AA^{-3}$) are located in the neighbourhood of heavy atoms. Figure S1 and S2 show fragments of the crystal structure of compound 1.

Figure S1. Packing of anions and cations in the crystal structure of compound 1. View along the crystallographic a axis. Color code: Pd: black, Sn orange, Bi blue, K black, N dark gray, O medium gray, C light gray. H atoms have been omitted for claritiy.

Figure S2. Packing of anions and cations in the crystal structure of compound 1. View along the crystallographic b axis. Color code: Pd: black, Sn orange, Bi blue, K black, N dark gray, O medium gray, C light gray. H atoms are omitted for claritiy.

3 Energy Dispersive X-ray (EDX) Spectroscopy Analysis

3.1 General

EDX analysis on 1 (Table S2) was performed using the EDX device Voyager 4.0 of Noran Instruments coupled with the electron microscope CamScan CS 4DV. Data aquisition was performed with an acceleration voltage of 20 kV and 100 s accumulation time. For the analyses multiple single crystals were used and the data recorded both: various times on one single crystal and various times on other single crystals.

Table S2. EDX analysis of $\mathbf{1}(\mathrm{Sn}, \mathrm{Bi}, \mathrm{Pd}, \mathrm{K})$.

Element	k-ratio	ZAF	Atom \%	Atomic ratio observed (calc)	Element $\mathrm{wt} \%$	wt \% Err. $(1-$ sigma $)$
Sn-L	0.2326	1.428	36.19	7.61	33.20	$+/-0.65$
Bi-M	0.4714	1.046	30.51	6.42	49.30	$+/-0.72$
Pd-L	0.0802	1.466	14.29	3.01	11.75	$+/-0.79$
K-L	0.0424	1.354	19.01	4	5.75	$+/-0.40$
Total			100.00	21.04	100.00	

4 Magnetic measurement

The magnetic susceptibility measurements were obtained with the use of a Quantum Design SQUID magnetometer MPMS-XL housed at the Centre de Recherche Paul Pascal. This magnetometer works between 1.8 and 300 K for dc applied fields ranging from -7 to 7 T . Measurements were performed on microcrystalline samples of 6.1 mg , prepared in a glove box under argon and sealed in a polyethylene plastic bag.

Figure S3. χ vs T plot for 1 at $H_{\mathrm{dc}}=1000$ Oe $(\chi$ being the molar magnetic susceptibility defined as M / H per complex). The solid red line is the best fit obtained with a Curie Law in order to estimate the presence of 0.9% of an $S=1 / 2$ paramagnetic impurity (based on the molecular weight of $\mathbf{1}$) and the diamagnetism of 1 at $-5.310^{-4} \mathrm{~cm}^{3} / \mathrm{mol}$.

5 Electrospray Ionization Mass Spectrometry (ESI-MS) Investigations

5.1 General

ESI-MS has been performed on a Finnigan LTQ-FT spectrometer by Thermo Fischer Scientific in the negative ion mode: Spray voltage 3.90 kV , capillary temperature $300^{\circ} \mathrm{C}$, capillary voltage -11 V , tube lens voltage -108.38 V , with sheath gas.

5.2 ESI-MS investigation of the reaction mixture

The reaction mixture, after 3 hours reaction time, was analyzed in the ethylenediamine/toluene solvent mixture. The overview of the ESI mass spectrum of the reaction mixture is given in Figure S4.

Figures S5-S7 show zooms of identifiable peaks:
at $\mathrm{m} / \mathrm{z}=655.76$; four-atom fragment $\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right]^{-}$
at $\mathrm{m} / \mathrm{z}=746.84$; four-atom fragment $\left[\mathrm{Sn}_{1} \mathrm{Bi}_{3}\right]^{-}$
at $\mathrm{m} / \mathrm{z}=1338.35$; nine-atom fragment $\left[\mathrm{Sn}_{6} \mathrm{Bi}_{3}\right]^{-}$
at $\mathrm{m} / \mathrm{z}=1402.61$; ten-atom fragment $\left[\mathrm{PdSn}_{6} \mathrm{Bi}_{3}\right]^{-}$

For the other peaks the identification failed. In these cases, it was obvious that the organic material is part of the detected species - at least as fragments - which complicated the assignment.

Figure S4. Overview of the ESI mass spectrum of the reaction mixture.

Figure S5. Measured (top) and simulated (bottom) spectrum of the fragment $\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2} \mathrm{H}\right]^{-}$.

Figure S6. Measured (top) and simulated (bottom) spectrum of the fragment $\left[\mathrm{Sn}_{6} \mathrm{Bi}_{3}\right]^{-}$.

Figure S7. Measured (top) and simulated (bottom) spectrum of the fragment $\left[\mathrm{PdSn}_{6} \mathrm{Bi}_{3}\right]^{-}$.

5.3 ESI-MS Investigation of Compound 1

Compound 1 was dissolved in dimethylformamide (dmf) at $-60^{\circ} \mathrm{C}$ (Figure S 8 and S9).

Figure S8. Overview of the ESI mass spectrum of the dissolved compound $\mathbf{1}$ in dmf.

Figure S9. Measured (top) and simulated (bottom) spectrum of the cluster $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{-}$.

6 Quantum Chemical Investigations

6.1 Computational Methods

The density functional theoretical (DFT) [6,7] investigations were undertaken by means of the program system Turbomole [8, 9] using the Ridft program [10, 11] with the Becke-Perdew 86 (BP86) functional [12-14] and the gridsize m3. Basis sets were of def2-TZVP quality [15] (TZVP = triple zeta valence plus polarization) for $\mathrm{Pd}, \mathrm{Sn}, \mathrm{Bi}$. For Pd (ECP-28), Sn (ECP-28) [16] and Bi atoms (ECP-60) [16], effective core potentials have been used for consideration of relativistic corrections and to reduce the computational effort. The high negative charge was compensated for by employment of the Cosmo model [17, 18]. Simultaneous optimizations of geometric and electronic structures were performed without symmetry restrictions for $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4}\left(C_{1}\right)$, also allowing for convergence into local minima at higher symmetry.

6.2 Quantum chemical investigations of the anion in compound 1

6.2.1 Investigation of the $\mathrm{Sn} / \mathrm{Bi}$ atom distribution of $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$

All 292 isomers of $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{4} \mathrm{Bi}_{9}\right]^{4-}$ have been investigated. The absolute and relative energies with respect to the most stable Isomer 1 are categorized by the occupation of C, B or A positions (see Figure S10) and the structural motif of the Bi atoms presented in Table S3. Table S4 provides a
comparison of the experimentally determined interatomic distances with those of the six calculated isomers ($1,101,13,108,15,95$).

Figure S10. Definition of A, B, and C positions of Sn and Bi atoms in the anion $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4}$.

The energy sequence in relation to the $\mathrm{Sn} / \mathrm{Bi}$ distribution over the atomic sites of the intermetalloid cluster anion follows two basic rules if the minority atom type Bi is considered:
I) length of the Bi -atom chain and II) position of the Bi atoms in the cluster anion. e.g., short Bi atom chains are favoured and isomers with Bi atoms occupying C positions are favoured in comparision to A positions. The B position is the worst for Bi atoms. The energetically most stable isomer is the one with Bi atoms occupying all C positions and Sn atoms on A and B positions in combination with three two-membered Bi atom chains. Isomers with five or four Bi atoms on C positions in combination with two- to three-membered Bi atom chains are by $18-31 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ disfavoured to the most stable one. If just one or no C position is taken by a Bi atom in combination with five- or six-membered Bi atom chains the isomers are disfavoured by $139-165 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.

Table S3. Absolute and relative energies of all 292 isomers. Relative energies are given with respect to the most stable Isomer 1.

Isomer	E/Hartree	$\Delta \mathrm{E} / \mathrm{kJmol}^{-1}$	Bi atom positions	Bi atom chain
Pd3Sn8Bi6lsomer1	-3390,040156804	0,00	$6^{*} \mathrm{C}$	3*Bi 2
Pd3Sn8Bi6lsomer101	-3390,033417075	17,69	$5^{*} \mathrm{C}, 1{ }^{*} \mathrm{~A}$	2*Bi 2, 1*isolated
Pd3Sn8Bi6Isomer13	-3390,031915159	21,64	5*C, 1*B	1*Bi 3, 1*Bi 2, 1^{*} isolated
Pd3Sn8Bi6Isomer96	-3390,031411099	22,96	$4^{*} \mathrm{C}, 2^{*} \mathrm{~A}$	$1^{*} \mathrm{Bi} 2,4^{*}$ isolated
Pd3Sn8Bi6Isomer25	-3390,031023708	23,98	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	2*Bi 2, 2*isolated
Pd3Sn8Bi6Isomer19	-3390,030965521	24,13	4*C, 1*B, 1*A	1*Bi $2,4{ }^{*}$ isolated
Pd3Sn8Bi6Isomer35	-3390,030659246	24,94	$5^{*} \mathrm{C}, 1 * \mathrm{~B}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer34	-3390,029614713	27,68	4*C, 1*B, 1*A	1*Bi 3, 1*Bi 2, 1^{*} isolated
Pd3Sn8Bi6lsomer121	-3390,029515909	27,94	$4^{*} \mathrm{C}, 2^{*} \mathrm{~A}$	1*Bi $2,4{ }^{*}$ isolated
Pd3Sn8Bi6lsomer176	-3390,028499139	30,61	$4^{*} \mathrm{C}, 2^{*} \mathrm{~A}$	1*Bi 2, 4*isolated
Pd3Sn8Bi6lsomer38	-3390,028421560	30,81	$4^{*} \mathrm{C}, 1^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	2*Bi $2,2^{*}$ isolated
Pd3Sn8Bi6lsomer108	-3390,027796185	32,45	$4^{*} \mathrm{C}, 1{ }^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 3, 3*isolated
Pd3Sn8Bi6Isomer104	-3390,027078803	34,34	$5^{*} \mathrm{C}, 1 * \mathrm{~B}$	1*Bi 5,1 *isolated
Pd3Sn8Bi6Isomer41	-3390,025953137	37,29	4*C, 2*B	1*Bi 3, $1^{*} \mathrm{Bi} 2$, 1 *isolated
Pd3Sn8Bi6lsomer103	-3390,025891970	37,45	4*C, 1*B, 1*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer143	-3390,025841900	37,58	4*C, 1*B, 1*A	1*Bi 3, 3*isolated
Pd3Sn8Bi6Isomer27	-3390,025592106	38,24	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 2*isolated

Pd3Sn8Bi6Isomer36	-3390,025365049	38,84	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer7	-3390,024630170	40,76	$4^{*} \mathrm{C}, 1{ }^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	2*Bi 2, 2*isolated
Pd3Sn8Bi6lsomer115	-3390,024348928	41,50	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	2*Bi 3
Pd3Sn8Bi6Isomer15	-3390,024089077	42,19	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer17	-3390,023995154	42,43	4*C, 2*B	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3,1*} \mathrm{Bi} \mathrm{2}, \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer197	-3390,023989107	42,45	$4^{*} \mathrm{C}, 1 * \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer26	-3390,023975811	42,48	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer20	-3390,023576580	43,53	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 2, 4*isolated
Pd3Sn8Bi6lsomer162	-3390,023334323	44,17	3*C, 2*B, 1*A	1*Bi 3, 3*isolated
Pd3Sn8Bi6lsomer31	-3390,023322092	44,20	$4^{*} \mathrm{C}, 1 * \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer114	-3390,023108451	44,76	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	2* Bi 3
Pd3Sn8Bi6Isomer43	-3390,023025751	44,98	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer14	-3390,022568577	46,18	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer16	-3390,022475795	46,42	4*C, 2*B	$1 * \mathrm{Bi} 3,1^{*} \mathrm{Bi} 2$, $1 *$ isolated
Pd3Sn8Bi6lsomer113	-3390,022381487	46,67	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer129	-3390,022328492	46,81	$3^{*} \mathrm{C}, 1^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 2, 4*isolated
Pd3Sn8Bi6Isomer46	-3390,022230511	47,06	$4^{*} \mathrm{C}, 2^{*} \mathrm{~A}$	2* Bi $2,2^{*}$ isolated
Pd3Sn8Bi6Isomer32	-3390,022004904	47,66	4*C, 1*B, 1*A	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3,1*Bi} \mathrm{2,} \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6Isomer98	-3390,021877879	47,99	$4^{*} \mathrm{C}, 1^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer42	-3390,021421494	49,19	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer18	-3390,021409731	49,22	3*C, 3*B	2^{*} Bi $2,2^{*}$ isolated
Pd3Sn8Bi6lsomer153	-3390,021238820	49,67	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 5,1 *isolated
Pd3Sn8Bi6Isomer65	-3390,020870145	50,64	4*C, 1*B, 1*A	1*Bi 3, 1*Bi 2 1*isolated
Pd3Sn8Bi6Isomer37	-3390,020367062	51,96	3*C, 3*B	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3}, 1^{*} \mathrm{Bi} 2, \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6Isomer95	-3390,020245316	52,28	$4^{*} \mathrm{C}, 1^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer151	-3390,020041928	52,81	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer152	-3390,019986126	52,96	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer106	-3390,019940418	53,08	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer161	-3390,019931997	53,10	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 3, 3*isolated
Pd3Sn8Bi6lsomer124	-3390,019849050	53,32	$4^{*} \mathrm{C}, 1{ }^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer21	-3390,019527457	54,16	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 3, 3*isolated
Pd3Sn8Bi6lsomer9	-3390,019509975	54,21	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	2* Bi $2,2^{*}$ isolated
Pd3Sn8Bi6lsomer212	-3390,019171045	55,10	3*C, 2*B, 1*A	1*Bi 3, $\mathbf{1}^{*} \mathrm{Bi}$ 2, 1 *isolated
Pd3Sn8Bi6Isomer28	-3390,019039622	55,44	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	1*Bi 3, 3*isolated
Pd3Sn8Bi6lsomer183	-3390,018849382	55,94	$3^{*} \mathrm{C}, 1{ }^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 3, 3*isolated
Pd3Sn8Bi6Isomer163	-3390,018789955	56,10	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer138	-3390,018779331	56,13	3*C, 2*B, 1*A	$1 * \mathrm{Bi} 3,1 * \mathrm{Bi} 2$, $1 *$ isolated
Pd3Sn8Bi6Isomer170	-3390,018769542	56,15	3*C, 3*B	$\begin{array}{r} \hline \text { 1*Bi 3, 1*Bi 2, } \\ \text { 1*isolated } \end{array}$
Pd3Sn8Bi6lsomer222	-3390,018636380	56,50	3*C, 3*B	$\begin{array}{r} \hline \text { 1*Bi 3, 1*Bi 2, } \\ \text { 1*isolated } \end{array}$
Pd3Sn8Bi6lsomer178	-3390,018635946	56,50	$3^{*} \mathrm{C}, 1{ }^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 3, 3*isolated
Pd3Sn8Bi6lsomer180	-3390,018406129	57,11	$4^{*} \mathrm{C}, 1^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi $5,1^{*}$ isolated
Pd3Sn8Bi6lsomer3	-3390,018403226	57,11	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	2* Bi 3
Pd3Sn8Bi6lsomer148	-3390,018314278	57,35	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	2* Bi 2,1 *isolated
Pd3Sn8Bi6Isomer207	-3390,018263586	57,48	3*C, 3*B	$\begin{array}{r} \hline 1^{*} \mathrm{Bi} \mathrm{3,1*} \mathrm{Bi} 2, \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer202	-3390,017786844	58,73	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi $5,1 *$ isolated
Pd3Sn8Bi6Isomer22	-3390,017606735	59,20	3*C, 2*B, 1*A	1*Bi 3, 3*isolated

Pd3Sn8Bi6lsomer204	-3390,017508892	59,46	4*C, 2*B	1*Bi 6
Pd3Sn8Bi6lsomer71	-3390,017504467	59,47	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer2	-3390,017125581	60,47	4*C, 2*B	2*Bi 3
Pd3Sn8Bi6lsomer171	-3390,017057544	60,65	3*C, 3*B	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer203	-3390,016628685	61,77	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 6
Pd3Sn8Bi6Isomer52	-3390,016612405	61,82	$3^{*} \mathrm{C}, 1{ }^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	2*Bi 2, 2*isolated
Pd3Sn8Bi6Isomer110	-3390,016589001	61,88	3*C, 2*B, 1*A	$\begin{array}{r} \hline{ }^{*} \mathrm{Bi} \mathrm{3} 3 \text { 1*Bi 2, } \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer123	-3390,016584622	61,89	$3^{*} \mathrm{C}, 1 * \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 3, 3*isolated
Pd3Sn8Bi6lsomer4	-3390,016215686	62,86	3*C, 3*B	1*Bi 3, 1*Bi 2, 1^{*} isolated
Pd3Sn8Bi6lsomer102	-3390,016039306	63,32	4*C, 1*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer81	-3390,015950272	63,55	3*C, 2*B, 1*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer221	-3390,015357165	65,11	3*C, 3*B	$\begin{array}{r}1^{*} \mathrm{Bi} 3,1^{*} \mathrm{Bi} 2, \\ 1^{*} \text { isolated } \\ \hline\end{array}$
Pd3Sn8Bi6Isomer80	-3390,015259296	65,37	3*C, 2*B, 1*A	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3,1*Bi} \mathrm{2,} \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6Isomer47	-3390,015036070	65,95	3*C, 1*B, 2*A	1*Bi 3, $1^{*} \mathrm{Bi} 2$, $1 *$ isolated
Pd3Sn8Bi6Isomer48	-3390,014815992	66,53	$4^{*} \mathrm{C}, 1 * \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer213	-3390,014563643	67,19	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer190	-3390,014559714	67,20	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	2* Bi 3
Pd3Sn8Bi6lsomer157	-3390,014523710	67,30	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	3* Bi 2
Pd3Sn8Bi6Isomer68	-3390,014454295	67,48	3*C, 2*B, 1*A	$1^{*} \mathrm{Bi} \mathrm{3}, 1^{*} \mathrm{Bi} 2$, 1^{*} isolated
Pd3Sn8Bi6lsomer211	-3390,014211579	68,12	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer149	-3390,014196619	68,16	3*C, 2*B, 1*A	1^{*} Bi 3, $1^{*} \mathrm{Bi} 2$, $1 *$ isolated
Pd3Sn8Bi6Isomer127	-3390,014144035	68,30	3*C, 2*B, 1*A	$\begin{array}{r} \hline 1^{*} \mathrm{Bi} \mathrm{3,1*Bi} \mathrm{2,} \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer158	-3390,014031550	68,59	3*C, 3*B	$\begin{array}{r} \hline 1^{*} \mathrm{Bi} \mathrm{3,1*Bi} \mathrm{2,} \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer107	-3390,013826523	69,13	3*C, 3*B	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer97	-3390,013703304	69,45	$3^{*} \mathrm{C}, 1 * \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer44	-3390,013604946	69,71	3*C, 3*B	$1^{*} \mathrm{Bi} \mathrm{3}, 1^{*} \mathrm{Bi} 2$, $1 *$ isolated
Pd3Sn8Bi6lsomer30	-3390,013411728	70,22	2*C, 4*B	2*Bi 2, 2*isolated
Pd3Sn8Bi6Isomer23	-3390,013276915	70,57	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer208	-3390,013182616	70,82	3*C, 3*B	2*Bi 3
Pd3Sn8Bi6lsomer145	-3390,013053644	71,16	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer147	-3390,013042893	71,19	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer199	-3390,012961479	71,40	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer118	-3390,012947481	71,44	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	2*Bi 3
Pd3Sn8Bi6Isomer73	-3390,012899621	71,56	4*C, 2*B	1*Bi 6
Pd3Sn8Bi6Isomer11	-3390,012795279	71,84	3*C, 2*B, 1*A	1*Bi 3, 1*Bi 2, 1^{*} isolated
Pd3Sn8Bi6lsomer279	-3390,012584114	72,39	$2^{*} \mathrm{C}, 3^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 3, 3*isolated
Pd3Sn8Bi6Isomer67	-3390,012412376	72,84	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer223	-3390,012328500	73,06	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer39	-3390,012208923	73,38	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer82	-3390,012191326	73,42	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer227	-3390,012125107	73,60	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer8	-3390,011779435	74,50	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer72	-3390,011771219	74,53	$4^{*} \mathrm{C}, 2^{*} \mathrm{~B}$	1*Bi 6
Pd3Sn8Bi6lsomer111	-3390,011742763	74,60	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	2* Bi 3
Pd3Sn8Bi6Isomer24	-3390,011715926	74,67	2*C, 3*B, 1*A	1*Bi 3, 3*isolated
Pd3Sn8Bi6lsomer137	-3390,011578498	75,03	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 5, 1*isolated

Pd3Sn8Bi6Isomer60	$-3390,011575429$	75,04	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	$1^{*} \mathrm{Bi} 4,1^{*} \mathrm{Bi} 2$
Pd3Sn8Bi6Isomer177	$-3390,011485434$	75,28	$3^{*} \mathrm{C}, 1^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	$1^{*} \mathrm{Bi} 4,2^{*} \mathrm{isolated}$
Pd3Sn8Bi6Isomer29	$-3390,011423138$	75,44	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	$1^{*} \mathrm{Bi} 4,2^{*}$ isolated
Pd3Sn8Bi6Isomer122	$-3390,011419366$	75,45	$3^{*} \mathrm{C}, 1^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	$1^{*} \mathrm{Bi} 4,2^{*} \mathrm{isolated}$
Pd3Sn8Bi6Isomer262	$-3390,011408122$	75,48	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	$1^{*} \mathrm{Bi} 5,1^{*} \mathrm{isolated}$
Pd3Sn8Bi6Isomer94	$-3390,011153835$	76,15	$4^{*} \mathrm{C}, 1^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	$1^{*} \mathrm{Bi} 6$
Pd3Sn8Bi6Isomer205	$-3390,011082052$	76,33	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	$1^{*} \mathrm{Bi} 5,1^{*} \mathrm{isolated}$
Pd3Sn8Bi6Isomer88	$-3390,011058490$	76,40	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	$1^{*} \mathrm{Bi} 5,1^{*}$ isolated
Pd3Sn8Bi6Isomer216	$-3390,011032675$	76,46	$2^{*} \mathrm{C}, 3^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	$2^{*} \mathrm{Bi} 2,2^{*} \mathrm{isolated}$
Pd3Sn8Bi6Isomer156	$-3390,010925010$	76,75	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	$3^{*} \mathrm{Bi} 2$
Pd3Sn8Bi6Isomer116	$-3390,010865039$	76,90	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	$2^{*} \mathrm{Bi} 3$
Pd3Sn8Bi6Isomer45	$-3390,010851114$	76,94	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	$1^{*} \mathrm{Bi} 4,1^{*} \mathrm{Bi} 2$
Pd3Sn8Bi6Isomer272	$-3390,010519840$	77,81	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	$1^{*} \mathrm{Bi} 5,1^{*} \mathrm{isolated}$
Pd3Sn8Bi6Isomer210	$-3390,010516925$	77,82	2^{*}	$2^{*} \mathrm{C}, 4^{*} \mathrm{~B}$

Pd3Sn8Bi6lsomer244	-3390,006931271	87,23	2*C, 2*B, 2*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer165	-3390,006920635	87,26	2*C, 3*B, 1*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer201	-3390,006908163	87,29	2*C, 3*B, 1*A	2*Bi 3
Pd3Sn8Bi6Isomer77	-3390,006898618	87,32	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer191	-3390,006787042	87,61	2*C, 3*B, 1*A	$1^{*} \mathrm{Bi} \mathrm{3}, 1^{*} \mathrm{Bi} 2$, 1*isolated 2
Pd3Sn8Bi6lsomer289	-3390,006576421	88,16	2*C, 4*B	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer141	-3390,006470288	88,44	2*C, 3*B, 1*A	3*Bi 2
Pd3Sn8Bi6Isomer150	-3390,006376478	88,69	2*C, 3*B, 1*A	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3,1*Bi} \mathrm{2,} \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer246	-3390,006257418	89,00	2*C, 2*B, 2*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer167	-3390,006234375	89,06	2*C, 3*B, 1*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer126	-3390,006227559	89,08	3*C, 2*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer261	-3390,006112171	89,38	3*C, 2*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer135	-3390,006012498	89,64	2*C, 2*B, 2*A	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3}, 1^{*} \mathrm{Bi} \mathrm{2}, \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6Isomer74	-3390,005894452	89,95	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer12	-3390,005838635	90,10	2*C, 3*B, 1*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer241	-3390,005777952	90,26	2*C, 3*B, 1*A	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3,1*Bi} \mathrm{2,} \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer159	-3390,005638995	90,63	2*C, 4*B	3* Bi 2
Pd3Sn8Bi6lsomer10	-3390,005633379	90,64	3*C, 2*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer225	-3390,005614628	90,69	2*C, 4*B	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3}, 1 * \mathrm{Bi} \mathrm{2}, \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer131	-3390,005562022	90,83	2*C, 2*B, 2*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer175	-3390,005327824	91,44	2*C, 4*B	$\begin{array}{r} \hline \text { 1*Bi 3, 1* Bi 2, } \\ \text { 1*isolated } \end{array}$
Pd3Sn8Bi6lsomer59	-3390,005253785	91,64	3*C, 2*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer133	-3390,005229708	91,70	2*C, 2*B, 2*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer245	-3390,005116664	92,00	$2^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer54	-3390,005107532	92,02	2*C, 2*B, 2*A	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3,1*Bi} \mathrm{2,} \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer288	-3390,005073026	92,11	2*C, 4*B	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer144	-3390,004949769	92,44	3*C, 2*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer187	-3390,004947244	92,44	2*C, 2*B, 2*A	2* Bi 3
Pd3Sn8Bi6Isomer130	-3390,004884434	92,61	$2^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer90	-3390,004868536	92,65	2*C, 4*B	$\begin{array}{r} \hline \text { 1*Bi 3, } 1 * \mathrm{Bi} 2, \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer280	-3390,004585742	93,39	2*C, 3*B, 1*A	1*Bi $5,1 *$ isolated
Pd3Sn8Bi6lsomer206	-3390,004552588	93,48	$3^{*} \mathrm{C}, 3^{*} \mathrm{~B}$	1*Bi 6
Pd3Sn8Bi6lsomer198	-3390,004545631	93,50	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 6
Pd3Sn8Bi6Isomer99	-3390,004480735	93,67	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 6
Pd3Sn8Bi6lsomer218	-3390,004422039	93,82	$2^{*} \mathrm{C}, 3^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer134	-3390,004327659	94,07	2*C, 2*B, 2*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer277	-3390,004098942	94,67	2*C, 4*B	$\begin{array}{r} 1^{*} \mathrm{Bi} \mathrm{3,} 1^{*} \mathrm{Bi} 2, \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer200	-3390,004061588	94,77	2*C, 3*B, 1*A	2* Bi 3
Pd3Sn8Bi6Isomer83	-3390,004006238	94,91	2*C, 3*B, 1*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6Isomer84	-3390,003829149	95,38	2*C, 3*B, 1*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer273	-3390,003757851	95,56	3*C, 3*B	1*Bi 6
Pd3Sn8Bi6lsomer287	-3390,003713982	95,68	2*C, 4*B	1*Bi 4, 1* Bi 2
Pd3Sn8Bi6lsomer186	-3390,003578460	96,04	2*C, 2*B, 2*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer281	-3390,003505696	96,23	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer112	-3390,003353010	96,63	2*C, 3*B, 1*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer174	-3390,003182149	97,08	2*C, 4*B	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3,1*Bi} \mathrm{2,} \\ 1 * \text { isolated } \end{array}$

Pd3Sn8Bi6Isomer53	-3390,003180214	97,08	2*C, 2*B, 2*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer224	-3390,003131465	97,21	2*C, 4*B	2* Bi 3
Pd3Sn8Bi6lsomer185	-3390,003005068	97,54	$2^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer276	-3390,002979328	97,61	2*C, 4*B	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3,1*Bi2,} \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer120	-3390,002912431	97,78	2*C, 4*B	1*Bi 4, 1*Bi2
Pd3Sn8Bi6Isomer49	-3390,002895935	97,83	3*C, 2*B, 1*A	1*Bi 6
Pd3Sn8Bi6Isomer55	-3390,002694918	98,36	$2^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer217	-3390,002601999	98,60	2*C, 3*B, 1*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer164	-3390,002594612	98,62	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer233	-3390,002232895	99,57	2*C, 2*B, 2*A	2*Bi 3
Pd3Sn8Bi6lsomer125	-3390,002188332	99,69	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer51	-3390,001951028	100,31	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer33	-3390,001725109	100,90	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer140	-3390,001701330	100,96	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer182	-3390,001625034	101,16	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer215	-3390,001425720	101,69	2*C, 3*B, 1*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer119	-3390,001421406	101,70	2*C, 4*B	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer238	-3390,001309432	101,99	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer91	-3390,001157875	102,39	2*C, 4*B	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer231	-3390,001140103	102,44	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer268	-3390,001010625	102,78	2*C, 3*B, 1*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer57	-3390,000991452	102,83	2*C, 2*B, 2*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer128	-3390,000973226	102,88	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer236	-3390,000948050	102,94	$3^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 1^{*} \mathrm{~A}$	1*Bi 6
Pd3Sn8Bi6Isomer63	-3390,000821880	103,27	2*C, 3*B, 1*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer232	-3390,000791990	103,35	2*C, 2*B, 2*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer166	-3390,000631173	103,77	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer214	-3390,000540627	104,01	2*C, 3*B, 1*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer267	-3390,000404163	104,37	2*C, 3*B, 1*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer142	-3390,000287824	104,67	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer184	-3389,999608192	106,46	$2^{*} \mathrm{C}, 2^{*} \mathrm{~B}, 2^{*} \mathrm{~A}$	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer56	-3389,999388630	107,04	2*C, 2*B, 2*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer179	-3389,999378094	107,06	2*C, 2*B, 2*A	1*Bi 6
Pd3Sn8Bi6Isomer86	-3389,999295232	107,28	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer275	-3389,999210446	107,50	2*C, 4*B	2* Bi 3
Pd3Sn8Bi6Isomer61	-3389,998960585	108,16	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer278	-3389,998622496	109,05	1*C, 5*B	3* Bi 2
Pd3Sn8Bi6lsomer195	-3389,998489893	109,40	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer257	-3389,998449355	109,50	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6Isomer219	-3389,998409330	109,61	1*C, 4*B, 1*A	1*Bi 3, 1*Bi 2, 1^{*} isolated
Pd3Sn8Bi6Isomer93	-3389,998026793	110,61	2*C, 4*B	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer100	-3389,997856062	111,06	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6Isomer269	-3389,997694096	111,48	1*C, 4*B, 1*A	1*Bi 3, 1*Bi 2, 1^{*} isolated
Pd3Sn8Bi6Isomer290	-3389,997136814	112,95	1*C, 5*B	1*Bi 3, $1^{*} \mathrm{Bi} 2$, $1 *$ isolated
Pd3Sn8Bi6lsomer230	-3389,996857942	113,68	2*C, 2*B, 2*A	1*Bi 6
Pd3Sn8Bi6Isomer92	-3389,996758508	113,94	2*C, 4*B	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer255	-3389,996282480	115,19	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6Isomer284	-3389,996219137	115,36	1*C, 4*B, 1*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer192	-3389,996067023	115,76	2*C, 3*B, 1*A	1*Bi 6

Pd3Sn8Bi6Isomer85	-3389,995996299	115,94	2*C, 3*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer291	-3389,995908449	116,17	1*C, 5*B	$\begin{array}{r} 1 * \mathrm{Bi} \mathrm{3,1*Bi} \mathrm{2,} \\ 1 * \text { isolated } \end{array}$
Pd3Sn8Bi6lsomer229	-3389,995635212	116,89	2*C, 2*B, 2*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer242	-3389,995431193	117,43	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer264	-3389,995211082	118,00	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer220	-3389,994685870	119,38	1*C, 4*B, 1*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6lsomer169	-3389,994681850	119,39	1*C, 4*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer265	-3389,994552317	119,73	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer168	-3389,994341825	120,29	1*C, 4*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer228	-3389,994052439	121,05	2*C, 2*B, 2*A	1*Bi 6
Pd3Sn8Bi6Isomer87	-3389,993738232	121,87	1*C, 4*B, 1*A	1*Bi 4, 2*isolated
Pd3Sn8Bi6lsomer193	-3389,993715454	121,93	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6Isomer247	-3389,993612071	122,20	1*C, 3*B, 2*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer270	-3389,993480754	122,55	1*C, 4*B, 1*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer64	-3389,993414859	122,72	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer250	-3389,993384005	122,80	1*C, 3*B, 2*A	1*Bi 4, 1*Bi 2
Pd3Sn8Bi6Isomer234	-3389,993222374	123,22	1*C, 3*B, 2*A	2* Bi 3
Pd3Sn8Bi6lsomer136	-3389,993187660	123,32	1*C, 3*B, 2*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer285	-3389,992676073	124,66	1*C, 4*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6Isomer58	-3389,992198666	125,91	1*C, 3*B, 2*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer259	-3389,992127062	126,10	1*C, 4*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer274	-3389,991636005	127,39	2*C, 4*B	1*Bi 6
Pd3Sn8Bi6lsomer240	-3389,991591166	127,51	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer188	-3389,990984055	129,10	1*C, 3*B, 2*A	1*Bi 6
Pd3Sn8Bi6lsomer283	-3389,990377450	130,69	1*C, 4*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer249	-3389,990075501	131,49	1*C, 3*B, 2*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer239	-3389,989648694	132,61	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer235	-3389,989520930	132,94	1*C, 3*B, 2*A	1*Bi 6
Pd3Sn8Bi6lsomer292	-3389,989452389	133,12	6*B	3*Bi 2
Pd3Sn8Bi6lsomer251	-3389,988842464	134,72	1*C, 3*B, 2*A	1*Bi 6
Pd3Sn8Bi6lsomer282	-3389,988685661	135,14	1*C, 4*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer248	-3389,988324149	136,09	$1^{*} C, 3^{*} B, 2^{*} A$	1*Bi 6
Pd3Sn8Bi6Isomer62	-3389,987467510	138,33	2*C, 3*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer196	-3389,987298382	138,78	1*C, 4*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer243	-3389,986566776	140,70	1*C, 4*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer258	-3389,985455728	143,62	1*C, 4*B, 1*A	1*Bi 6
Pd3Sn8Bi6lsomer286	-3389,985126267	144,48	5*B, 1*A	1*Bi 5, 1*isolated
Pd3Sn8Bi6lsomer254	-3389,980435579	156,80	4*B, 2*A	1*Bi 6
Pd3Sn8Bi6lsomer260	-3389,979614741	158,95	5*B, 1*A	1*Bi 6
Pd3Sn8Bi6Isomer253	-3389,978502636	161,87	4*B, 2*A	1*Bi 6
Pd3Sn8Bi6lsomer252	-3389,977243920	165,18	4*B, 2*A	1*Bi 6

Table S4. Comparison of experimental interatomic distances in the anion of 1, the three calculated anions of lowest energy and three arbitrarily chosen isomers.
Deviations are given in parentheses.

Bond type	Distances /pm						
	X-ray	$\Delta E=0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ Isomer 1	$\begin{aligned} & \Delta E=18 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\ & \text { Isomer } 101 \end{aligned}$	$\begin{aligned} & \Delta E=22 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1+} \\ & \text { Isomer } 13 \end{aligned}$	$\begin{aligned} & \Delta E=32 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\ & \text { Isomer } 108 \end{aligned}$	$\begin{aligned} & \Delta E=42 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1+} \\ & \text { Isomer } 15 \end{aligned}$	$\begin{aligned} & \Delta E=52 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\ & \text { Isomer } 95 \end{aligned}$
Sn(1,14)-Sn(2-4, 11-13)	$\begin{aligned} & 289.75- \\ & 294.52 \end{aligned}$	$\begin{aligned} & \text { 293.82- } \\ & \text { 293.87 } \\ & {[4.1-(-0.7) ; \text { av. } 2.4]} \end{aligned}$	$\begin{aligned} & \text { 293.38- } \\ & 302.34 \\ & \text { [3.6-7.8; av } 5.7] \end{aligned}$	$\begin{aligned} & 291.25- \\ & 301.09 \\ & \text { [1.5-6.6; av 4.1] } \end{aligned}$	$\begin{aligned} & \text { 294.16- } \\ & 302.54 \\ & \text { [4.4-8.0; av. 6.2] } \end{aligned}$	$\begin{aligned} & 292.31- \\ & 302.30 \\ & \text { [2.6-7.8; av } 5.2] \end{aligned}$	$\begin{aligned} & \text { 292.96- } \\ & 311.75 \\ & \text { [3.2-17.2; av 10.2] } \end{aligned}$
Sn(2-4, 11-13)-Bi(5-10)	$\begin{aligned} & \hline 301.94- \\ & 309.11 \end{aligned}$	$\begin{aligned} & \text { 310.89- } \\ & 311.24 \\ & \text { [9.0-2.1; av. } 5.6 \text {] } \end{aligned}$	$\begin{aligned} & 305.77- \\ & 317.27 \\ & {[3.8-8.2 ; \text { av } 6.0]} \end{aligned}$	$\begin{aligned} & 308.54- \\ & 317.05 \\ & {[6.6-7.9 ; \text { av } 7.3]} \end{aligned}$	$\begin{aligned} & \text { 303.32- } \\ & 317.87 \\ & {[1.4-8.8 ; \text { av. } 5.1]} \end{aligned}$	$\begin{aligned} & 303.96- \\ & 324.10 \\ & {[2.0-15.0 ; \text { av } 8.5]} \end{aligned}$	$\begin{aligned} & 300.20- \\ & 326.24 \\ & \text { [-1.7-17.1; av 18.8] } \end{aligned}$
$\mathbf{S n}(2-4)-\mathbf{S n}(11-13)$	$\begin{aligned} & \hline 318.68- \\ & 326.03 \end{aligned}$	$\begin{aligned} & \text { 329.01- } \\ & 329.46 \\ & {[10.3-3.4 ; \text { av. } 6.9]} \end{aligned}$	$\begin{aligned} & \text { 323.39- } \\ & 326.33 \\ & \text { [4.7-0.3; av } 5.0 \text {] } \end{aligned}$	$\begin{aligned} & 326.20 \\ & 331.66 \\ & {[7.5-5.6 ; \text { av } 6.6]} \end{aligned}$	$\begin{aligned} & 322.28- \\ & 326.54 \\ & {[3.6-0.5 ; \text { av. } 2.1]} \end{aligned}$	$\begin{aligned} & 319.89- \\ & 325.49 \\ & {[1.2-(-0.5) ; \text { av } 0.9]} \end{aligned}$	$\begin{aligned} & 323.17- \\ & 324.15 \\ & {[4.5-1.9 ; \text { av } 3.2]} \end{aligned}$
Bi(5-10)-Bi(5-10)	$\begin{aligned} & \hline 312.41- \\ & 314.88 \end{aligned}$	$\begin{aligned} & \hline 317.18- \\ & 317.51 \\ & {[4.8-2.6 ; \text { av. } 3.7]} \end{aligned}$	$\begin{aligned} & \hline 304.54- \\ & 320.13 \\ & {[-7.9-5.3 ; \text { av } 6.6]} \end{aligned}$	$\begin{aligned} & \hline 303.90- \\ & 320.92 \\ & {[-8.5-6.0 ; \text { av } 7.3]} \end{aligned}$	$\begin{aligned} & \text { 302.54- } \\ & 320.04 \\ & {[-9.9-5.2 ; \text { av. 7.6] }} \end{aligned}$	$\begin{aligned} & \text { 303.65- } \\ & 314.82 \\ & {[-8.8-(-0.1) ; \text { av } 4.5]} \end{aligned}$	$\begin{aligned} & \hline 300.69- \\ & 320.13 \\ & {[-11.7-5.3 ; \text { av } 8.5]} \end{aligned}$
$\mathbf{S n}(1,14)-\mathbf{P d}(1-3)$	$\begin{aligned} & 296.39- \\ & 302.35 \end{aligned}$	$\begin{aligned} & \text { 302.60- } \\ & 302.80 \\ & \text { [9.2-0.5; av. 4.9] } \end{aligned}$	$\begin{aligned} & \text { 298.09- } \\ & 306.02 \\ & {[1.7-3.7 ; \text { av } 2.7]} \end{aligned}$	$\begin{aligned} & 296.48- \\ & 303.36 \\ & {[0.1-1.0 ; \text { av } 0.6]} \end{aligned}$	$\begin{aligned} & 295.29- \\ & 307.39 \\ & {[-1.1-5.0 ; \text { av. } 3.1]} \end{aligned}$	$\begin{aligned} & \text { 293.39- } \\ & 304.93 \\ & {[-3.0-2.6 ; \text { av } 2.8]} \end{aligned}$	$\begin{aligned} & \text { 296.23- } \\ & 306.53 \\ & {[-0.2-4.2 ; \text { av } 2.2]} \end{aligned}$
$\mathbf{S n}(2-4,11-13)-\mathbf{P d}(1-3)$	$\begin{aligned} & \hline 286.87- \\ & 291.19 \end{aligned}$	$\begin{aligned} & 293.29 \\ & 293.66 \\ & \text { [6.4-2.5; av. } 4.5] \end{aligned}$	$\begin{aligned} & 290.95- \\ & 300.57 \\ & {[4.1-9.4 ; \text { av } 6.8]} \end{aligned}$	$\begin{aligned} & 290.86- \\ & 299.37 \\ & {[4.0-8.2 ; \text { av 6.1] }} \end{aligned}$	$\begin{aligned} & 291.76 \\ & 301.98 \\ & \text { [4.9-10.8; av. 7.9] } \end{aligned}$	$\begin{aligned} & 292.16- \\ & 300.50 \\ & \text { [5.3-9.3; av 7.3] } \end{aligned}$	$\begin{aligned} & 290.93- \\ & 310.72 \\ & {[4.1-19.5 ; \text { av } 11.8]} \end{aligned}$
$\mathbf{B i}(5-10)-\mathrm{Pd}(1-3)$	$\begin{aligned} & \hline 272.76- \\ & 275.08 \end{aligned}$	$\begin{aligned} & \text { 277.67- } \\ & \text { 278.01 } \\ & \text { [4.9-2.9; av. 3.9] } \end{aligned}$	$\begin{aligned} & 275.86- \\ & 279.07 \\ & \text { [3.1-4.0; av 7.1] } \end{aligned}$	$\begin{aligned} & 275.96- \\ & 279.66 \\ & \text { [3.2-4.6; av 3.9] } \end{aligned}$	$\begin{aligned} & 275.83- \\ & 278.94 \\ & \text { [3.1-3.9; av 3.5] } \end{aligned}$	$\begin{aligned} & 274.37- \\ & 278.83 \\ & {[1.6-3.8 ; \text { av } 5.4]} \end{aligned}$	$\begin{aligned} & 275.03- \\ & 278.55 \\ & {[2.3-3.5 ; \text { av } 2.9]} \end{aligned}$
$\mathbf{P d}(1-3)-\mathrm{Pd}(1-3)$	$\begin{aligned} & \hline 275.73- \\ & 277.20 \end{aligned}$	$\begin{aligned} & 280.58- \\ & 280.73 \\ & \text { [4.9-3.5; av. 2.8] } \end{aligned}$	$\begin{aligned} & 279.67- \\ & 283.54 \\ & \text { [3.9-6.3; av 5.1] } \end{aligned}$	$\begin{aligned} & 279.61- \\ & 283.06 \\ & \text { [3.9-5.9; av 4.9] } \end{aligned}$	$\begin{aligned} & \text { 281.78- } \\ & 286.58 \\ & {[6.1-9.4 ; \text { av. } 7.8]} \end{aligned}$	$\begin{aligned} & \text { 283.02- } \\ & \text { 285.41 } \\ & \text { [7.3-8.2; av 15.5] } \end{aligned}$	$\begin{aligned} & 282.01- \\ & 286.19 \\ & {[6.3-9.0 ; \text { av } 7.7]} \end{aligned}$

6.2.2 Natural Population Analysis (NPA) of the most stable isomer of $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ according to DFT calculations in $D_{3 h}$ symmetry.

Table S5. Natural charges calculated by means of a Natural Population Analysis (NPA) [19] based on the DFT $[6,7]$ optimized electronic and geometric structure of the anion in $\mathbf{1}$.

Atom No	Natural Charge	Natural Population	Valence	Rydberg	Total
		Core	10.03	0.06	18.08
Pd1	-0.08	7.99	10.03	0.06	18.08
Pd2	-0.08	7.99	10.03	0.06	18.08
Pd3	-0.08	7.99	11.33	0.02	23.34
Bi1	-0.34	12.00	11.33	0.02	23.34
Bi2	-0.34	12.00	11.33	0.02	23.34
Bi3	-0.34	12.00	11.33	0.02	23.34
Bi4	-0.34	12.00	11.33	0.02	23.34
Bi5	-0.34	12.00	4.31	0.02	23.34
Bi6	-0.34	12.00	4.31	0.03	22.34
Sn1	-0.34	18.00	4.31	0.03	22.34
Sn8	-0.34	18.00	4.31	0.03	22.34
Sn2	-0.17	18.00	4.31	0.03	22.34
Sn3	-0.17	18.00	4.31	0.03	22.34
Sn4	-0.17	18.00	4.31	0.03	22.34
Sn5	-0.17	18.00	4.31	0.03	22.34
Sn6	-0.17	18.00			
Sn7	-0.17	18.00	131.54	0.54	372.00
Total	-4.00000	240.00			

6.2.3 Investigation of the interaction of the Pd_{3} triangle with the main group cage [$\left.\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ by comparison of structural parameters and Mulliken population analysis

For the most stable Isomer 1 the interaction of the Pd triangle with the main group atom cage has been studied by comparison of the geometries (Table S6) and a Mulliken population analysis [20] of the molecular orbitals (MOs). For this purpose the anion in 1 as well as the corresponding fragments $\left[\mathrm{Pd}_{3}\right]$ and $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ have been calculated in $D_{3 h}$ symmetry. All MOs are shown in the following subchapters, plotted by means of the program gOpenMol [21].

It is obvious that the bonding within the cluster is characterized by a high degree of delocalization, hence cluster orbitals that are related to atomic orbitals can be observed. However, in comparison to an atom, the ternary cluster anion possesses a much lower symmetry (calculated as $D_{3 h}$) as a result of distinct compression along the C_{3} axis. Thus, the identification of pure $\mathrm{s}, \mathrm{p}, \mathrm{d}$, and f-type cluster orbitals is complicated or in part impossible due to significant mixing of the respective irreducible representations. Comparison of the MO diagrams of $\left[\mathrm{Pd}_{3}\right]$ and $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ with that of $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ (Figure S13) shows that the lowest MOs of the $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4}$ cluster anion are non-bonding (either representing the bonding within the $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ cluster shell, or the bonding in the $\left[\mathrm{Pd}_{3}\right]$ cluster), whereas most MOs between the HOMO level and HOMO-19 show nearly equal contributions from both fragments to form cluster orbitals - however both in $\mathrm{Pb}-\mathrm{Sn} / \mathrm{Bi}$ bonding as well as antibonding fashion.

Table S6. Interatomic distances $/ \AA$ in the $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4}$ anion in $\mathbf{1}=[\mathbf{A}]^{4-}$ exp ${ }_{\text {av }}$, averaged for equivalent bonds, and in the calculated anion $=[A]^{4}$ calc, in comparison with the according values in calculated fragments $\left[\mathrm{Pd}_{3}\right]=[\mathbf{P}]$ and $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}=[\mathbf{S}]^{4}$, or $\left[\mathrm{Pd}_{3}\right]^{2-}=[\mathbf{P}]^{2-}$ and $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{2-}=[\mathbf{S}]^{2-}$. Grey boxes highlight the values that agree best with those of $[\mathrm{A}]^{4}$ calc. Atom numbers accord with the labeling scheme in Figure 1. Note that the structure of $[\mathbf{S}]^{2-}$ produces imaginary frequencies indicating deviation from a local minimum.

Distance	$\left[\mathrm{A}^{4-}\right.$ exp $_{\mathrm{av}}$	$[\mathrm{A}]^{4-}$ calc	$[\mathrm{S}]^{4-} /[\mathrm{P}]$	$[\mathrm{S}]^{2-} /[\mathrm{P}]^{2-}$
$\mathrm{Sn} 1,8-\mathrm{Sn} 2-7$	2.917	2.942	$2.874 /-$	$2.891 /-$
$\mathrm{Sn} 2-4-\mathrm{Sn} 5-7$	3.224	3.287	$3.326 /-$	$3.239 /-$
$\mathrm{Sn} 2-7-\mathrm{Bi}$	3.056	3.109	$2.996 /-$	$2.924 /-$
$\mathrm{Bi}-\mathrm{Bi}$	3.136	3.172	$3.015 /-$	$3.219 /-$
$\mathrm{Pd}-\mathrm{Sn} 1,8$	2.993	3.031	-	-
$\mathrm{Pd}-\mathrm{Sn} 2-7$	2.896	2.934	-	-
$\mathrm{Pd}-\mathrm{Bi}$	2.739	2.778	-	-
$\mathrm{Pd}-\mathrm{Pd}$	2.768	2.806	$-/ 2.482$	$-/ 2.608$

6.2.3.1 Molecular orbitals of $\left[\mathrm{Pd}_{3}\right]$

$2 \mathrm{a} 2 " \quad-7.002 \mathrm{eV}$

$4 a 1^{\prime} \quad-6.550 \mathrm{eV}$

$2 e^{"} \quad-6.177 \mathrm{eV}$

$5 e^{\prime} \quad-5.651 \mathrm{eV}$

5a1’ $\quad-5.461 \mathrm{eV}$

∇

3 e " -5.067 eV

HOMO: 1a1" -5.066 eV

$$
8
$$

LUMO: 2a2' $\quad-4.961 \mathrm{eV}$

$7 \mathrm{e}^{\prime} \quad-2.784 \mathrm{eV}$

$8 \mathrm{e}^{\prime} \quad+0.046 \mathrm{eV}$

6.2.3.2 Molecular orbitals of $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$

16a1' -14.398 eV

$25 e^{\prime} \quad-14.148 \mathrm{eV}$

10a2' -12.667 eV

$17 \mathrm{a} 1^{\prime} \quad-11.120 \mathrm{eV}$

$13 \mathrm{a} 2 "-11.040 \mathrm{eV}$

$27 \mathrm{e}^{\prime} \quad-9.586 \mathrm{eV}$

$19 e^{\prime \prime} \quad-9.413 \mathrm{eV}$

18a1' -8.603 eV

$14 \mathrm{a} 2^{\prime \prime}-7.785 \mathrm{eV}$

$28 \mathrm{e}^{\prime} \quad-5.503 \mathrm{eV}$

19a1' -5.462 eV

$20 e^{\prime \prime}-5.341 \mathrm{eV}$

$29 e^{\prime} \quad-5.143 \mathrm{eV}$

7 a 1 " -4.447 eV

20a1' -4.375 eV

$21 \mathrm{e}^{\prime \prime} \quad-4.163 \mathrm{eV}$

11a2' -4.163 eV

15a2" -3.780 eV

21a1' -3.520 eV

$16 \mathrm{a} 2^{\prime \prime}-3.466 \mathrm{eV}$

HOMO: 31e' $\quad-3.411 \mathrm{eV}$

LUMO: 22e" $\quad-2.081 \mathrm{eV}$

$32 e^{\prime} \quad-1.616 \mathrm{eV}$

23 e " -1.423 eV

22a1' -1.387 eV

$33 e^{\prime}-1.168 \mathrm{eV}$

$34 \mathrm{e}^{\prime} \quad-0.740 \mathrm{eV}$

17 a 2 " -0.630 eV

$24 e^{\prime} \quad-0.536 \mathrm{eV}$

23a1' -0.242 eV

6.2.3.3 Molecular orbitals of $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$

$28 e^{\prime} \quad-14.113 \mathrm{eV}$

29e' -13.233 eV

11a2' -12.919 eV

19a1' -11.663 eV

14 a 2 " -11.239 eV

$20 \mathrm{e} " \quad-9.747 \mathrm{eV}$

20a1' -9.177 eV

$15 \mathrm{a} 2 "-8.080 \mathrm{eV}$

21a1, -7.027eV

31e' -6.656 eV

$21 \mathrm{e} " \quad-6.170 \mathrm{eV}$

16a2" -6.088 eV

32e' -6.086 eV

22a1’ -6.069 eV

$33 e^{\prime} \quad-5.817 \mathrm{eV}$

7 a 1 ", $\quad-5.810 \mathrm{eV}$

23a1' $\quad-5.347 \mathrm{eV}$

$22 e^{\prime \prime} \quad-5.319 \mathrm{eV}$

35e' $\quad-4.866 \mathrm{eV}$

$36 e^{\prime} \quad-4.419 \mathrm{eV}$

8a1" $\quad-3.854 \mathrm{eV}$

$24 e^{\prime} \quad-3.849 \mathrm{eV}$

17a2" -3.818 eV

$25 a 1^{\prime}-3.783 \mathrm{eV}$

13a2' -3.551 eV

HOMO: 18a2" - 3.221 eV

LUMO: 25e" $\quad-2.378 \mathrm{eV}$

26a1' -1.570 eV

$39 \mathrm{e}^{\prime} \quad-1.092 \mathrm{eV}$

$26 \mathrm{e}^{\prime}$ " -1.079 eV

40e’ -0.989 eV

$27 \mathrm{e}^{\prime} \quad-0.664 \mathrm{eV}$

19a2" -0.652 eV

$27 \mathrm{a} 1^{\prime}-0.346 \mathrm{eV}$

20a2" -0.182 eV

$15 \mathrm{a} 2^{\prime} \quad-0.173 \mathrm{eV}$

28a1' -0.091 eV

Figure S11. Molecular orbitals of fragments $\left[\mathrm{Pd}_{3}\right],\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$, and the cluster anion $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$, according to Mulliken population analysis [20]. For these analyses, the most stable Isomer $\mathbf{1}$ has been considered.

Figure S12. Fragments of the molecular orbital (MO) schemes for an isolated $\left[\mathrm{Pd}_{3}\right]$ cluster (left), and empty $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ anion (right), and the $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ anion (center), according to DFT calculations. Combinations of MOs are highlighted by colored lines; dashed lines denote MOs that derive from only one of the fragments. Note that the energies of the charged species have been shifted by about -0.9 eV relative to the energies of the neutral compound in order to adjust the energies of the non-bonding $\left[\mathrm{Pd}_{3}\right]$ MOs. The effect that charge compensation using the Cosmo model leads to an energy shift is well-known [22]. The drawn MOs represent examples for s-d-type (blue), d-s-type (red; bonding and anti-bonding MO shown) and p-f-type (violet; bonding and anti-bonding MO shown) cluster orbitals. Not listed MOs of the cluster anion and the empty shell below -9 eV represent combinations of s-type valence orbitals of the main groups atoms that are identical for both the fragment and the ternary cluster anion. Amplitudes are drawn to ± 0.03 a.u..

6.2.4. Inspection of the interaction of the Pd_{3} triangle with the main group cage $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]$ by comparison of localized molecular orbitals (LMOs)

The bonding situation was further studied by generation of localized molecular orbitals (LMOs), generated according to the technique developed by Boys [23, 24]. LMOs have been generated for the most stable Isomer $\mathbf{1}$ of the anion in $\mathbf{1}$ and the fragments: $\left[\mathrm{Pd}_{3}\right]$ and $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ as well as for $\left[\mathrm{Pd}_{3}\right]^{2-}$ and $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{2-}$. Vibrational modes were calculated using the program numforce implemented in Turbomole. Even in its lowest energy electronic configuration, $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{2-}$ possesses three imaginary modes. The comparison of LMOs of the fragments for the two models in question, $\left[\mathrm{Pd}_{3}\right]+\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ or $\left[\mathrm{Pd}_{3}\right]^{2-}+\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{2-}$, with those of $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ direct toward a "hybrid" situation. Both pairs of fragments possess LMOs that are characteristic of the ternary anion, but at the same time, neither of them shows an exact agreement. However, structural changes within the fragments upon geometry optimization definitely contribute the observed differences. Selected LMOs are shown in the following subchapters, plotted by means of the program gOpenMol [21]. Amplitudes are drawn to ± 0.03 a.u..

6.2.4.1 Localized molecular orbitals for $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$

Further LMOs comprise non-bonding d-AOs at Sn (LMO-70 - LMO-31) and d-AOs at Bi (LMO-30 -LMO-1).
6.2.4.2 Localized molecular orbitals for $\left[\mathrm{Pd}_{3}\right]$ (top view)

6.2.4.2 Localized molecular orbitals for $\left[\mathrm{Pd}_{3}\right]$ (side view)

LMO-03
LMO-02
LMO-01

680

6.2.4.3. Localized molecular orbitals for $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$

LMO-73
LMO-72
LMO-71

Further LMOs comprise non-bonding d-AOs at Sn (LMO-70 - LMO-31) and d-AOs at Bi (LMO-30 -LMO-1).
6.2.4.4. Localized molecular orbitals for $\left[\mathrm{Pd}_{3}\right]^{2-}$ (top view)

6.2.4.4. Localized molecular orbitals for $\left[\mathrm{Pd}_{3}\right]^{2-}$ (side view)

LMO-04
LMO-03
LMO-02
LMO-01

6.2.4.5 Localized molecular orbitals for $\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{2-}$

LMO-72
LMO-71

Further LMOs comprise non-bonding d-AOs at Sn (LMO-70 - LMO-31) and d-AOs at Bi (LMO-30 -LMO-1).

Figure S13. Localized molecular orbitals (LMOs) of the cluster anion $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ and its hypothetical fragments $\left[\mathrm{Pd}_{3}\right],\left[\mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-},\left[\mathrm{Pd}_{3}\right]^{2-}$ and $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{2-}$ according to the analysis of Boys [23, 24]. For the calculations, the most stable Isomer 1 has been considered.

7 Investigations on the formation of compound 1

7.1 H_{2} detection

After the common reaction time of three hours, the reaction solution was analyzed at the Max-PlanckInstitute for Terrestrical Microbiology by means of gas chromatography, with a $\mathrm{HgO}-\mathrm{to}-\mathrm{Hg}$ conversion detector $\left(280^{\circ} \mathrm{C}, \mathrm{RGD} 2\right.$; Trace Analytical) after separation at $85^{\circ} \mathrm{C}$ on Molecular Sieve $5 \AA$ (2 m length, 3.2 mm diameter) with synthetic air $\left(80 \% \mathrm{~N}_{2}, 20 \% \mathrm{O}_{2}\right)$ at $10 \mathrm{~mL} \mathrm{~min}^{-1}$ as carrier gas. The gas chromatograph was calibrated with standard gases (Messer Griesheim). For providing identical conditions as described for the formation of $\mathbf{1}$ in the experimental part of the contribution, the reaction was performed in a glove box before a sample was withdrawn for the analysis. The latter clearly indicated the formation of H_{2}, as shown in Figure S14. We assume the H_{2} to stem from 1,2diaminoethane (en) rather than from 1,2-bis(diphenylphosphino)ethane (dppe), as further outlined below.

Figure S14. Result of the H_{2} detection study, the response for the H_{2} standard (top) and the response for the gas volume taken from the reaction mixture (bottom).

7.2 ESI-MS measurement of the reaction solution

ESI-MS measurements of the reaction solution were extended to the mass region 200 to $500 \mathrm{~m} / \mathrm{z}$. The according ESI spectrum (Figure S15) shows the presence of $\left[\mathrm{Bi}_{2}\right]^{-}$units at $\mathrm{m} / \mathrm{z}=417.9919$.

Figure S15. ESI mass spectrum of the precursor solution upon addition of $\operatorname{Pd}(\mathrm{dppe})_{2}$ indicating the presence of $\left[\mathrm{Bi}_{2}\right]^{-}$units at $\mathrm{m} / \mathrm{z}=417.9919$ (calculated: 417.96078).

7.3 NMR studies of the reaction solution

In order to investigate whether reduced species of dppe are detectable and/or whether dppe releases H_{2} (see 7.1), ${ }^{31} \mathrm{P}$-NMR spectra were recorded (a) after the common reaction time of three hours and (b) after the reaction solutions were allowed to stand for several weeks. The ${ }^{31} \mathrm{P}$-NMR spectra that were recorded shortly after the combination of the reactants indicate the presence of free dppe ligands at $(-12.4 \mathrm{ppm})$, demonstrating that the reaction has taken place, beside the $\operatorname{Pd}(\mathrm{dppe})_{2}$ complex (31.1 ppm); however none of these spectra shows the formation of any further P containing species (see Figure S 16 , top). We take this as a clear hint that H_{2} decends from en as the most acidic species.
After several weeks, one detects another signal at -3.4 ppm that can be assigned to $\left(\mathrm{Ph}_{2} \mathrm{P}\right)^{-}$and a third one at 78.9 ppm which we cannot assign unambiguously to any known phosphorous species (see Figure S16, bottom). We assume that these P-containing species result from ongoing fragmentation of the phosphine under the reductive conditions in solution, but do not seem to play a role in the formation of the title compound. At no time, there is any indication for the formation of a
deprotonated phoshine species, such as $\mathrm{Ph}_{2} \mathrm{PCH}^{-} \mathrm{CH}_{2} \mathrm{PPh}_{2}$, detected upon reaction of $\left[\mathrm{Sn}_{9}\right]^{4-}$ with $[\mathrm{IrCl}(\mathrm{cod})]_{2}$ by Fässler and co-workers [25], which supports our assumption once more.

Figure S16. ${ }^{31} \mathrm{P}$-NMR spectrum of the reaction solution after three hours (top, measured on a Bruker DRX 400 spectrometer with an observed frequency of $162 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)$ at $25^{\circ} \mathrm{C}$) and after several weeks (bottom, measured on a Bruker Avance 300 A spectrometer with an observed frequency of 122 $\mathrm{MHz}\left({ }^{(31} \mathrm{P}\right)$ at $\left.25^{\circ} \mathrm{C}\right)$.

7.5 Proposed reaction scheme and meachanism

According to the results of the studies and analyses outlined in 7.1-7.4, we conclude the formation of the title compound $\mathbf{1}$ in the following reaction scheme [eq (1), detectable products printed in bold]:

$$
\begin{align*}
& 4\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right]^{2-}+3 \mathrm{Pd}(\mathrm{dppe})_{2}+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \\
& \longrightarrow\left[\mathbf{P d}_{3} \mathbf{S n}_{8} \mathbf{B i}_{6}\right]^{4-}+\left[\mathbf{B i}_{2}\right]^{2-}+6 \text { dppe }+2{ }^{-} \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathbf{H}_{2} \tag{1}
\end{align*}
$$

Based on the analyses described above, on the nature of the reactants and on the structure of product, we may suggest two possible pathways (A and B) for the formation of the ternary cluster anion in $\mathbf{1}$. In order to rationalize the possibility of any of the proposed mechanisms, the postulated intermediate species have been calculated by DFT methods as outlined below. As shown in Figures S17 and S19, both hypothetical pathways would involve (a) the final release of one equivalent of $\left[\mathrm{Bi}_{2}\right]^{2-}$ per formula unit of the title compound, (b) electron transfer onto two en molecules, and (c) H_{2} formation.

Pathway A

The product cluster might have been formed out of a preliminary macrocycle $\left\{\left[\operatorname{Pd}\left(\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right)\right]_{3}\right\}^{\mathrm{q}^{-}}$by reaction with a source for two additional Sn atoms, and simultaneaous electron transfer onto en molecules under release of H_{2} (see sketch in Figure S18). This suggestion is exclusively based on the structural peculiarities of the title compound that exhibits the according cycle which is capped by two further Sn atoms. No statement can be made on the reactive species releasing the latter, which may be (a) an intact $\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right]^{2-}$ anion as source for one Sn atom (under formation of $\left[\mathrm{Bi}_{2}\right]^{2-}$ and " $\mathrm{Sn}^{0, ")}$) or as source for two Sn atoms at two neighboring clusters (under formation of $\left[\mathrm{Bi}_{2}\right]^{2-}$) or (b) Sn atoms /anions that derive from further fragmentation of the starting material.

Figure S17. Schematic drawing of the key step in the formation of the anion in 1, based on the reaction of a precursor macrocycle $\left\{\left[\operatorname{Pd}\left(\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right)\right]_{3}\right\}^{\mathrm{q}^{-}}$with further starting material as source for additional Sn atoms (pathway A); note that the two $\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right]^{2-}$ tetrahedra that are drawn only count as $0.5\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right]^{2-}$ per macrocylce on average.

DFT calculations of the intermediate macrocycle $\left\{\left[\mathrm{Pd}\left(\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right)\right]_{3}\right\}^{\mathrm{q}-}$ was performed with charges $\mathrm{q}=-6$ (according to the sum of original charges of three $\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right]^{2-}$ anions and three Pd^{0} atoms) and $\mathrm{q}=-4$ (assumed that the resulting charge of the cluster anion in $\mathbf{1}$ has been already achieved in this state). In both cases, the geometry optimizations converged into local mimima, but the resulting geometries differ significantly from the geometry of this moiety within the anion in $\mathbf{1}$ - not only at the still uncapped Sn_{3} sites (Figure S18 and Table S7).

Figures S18. Result of the DFT geometry optimizations of hypothetical macrocycle fragments $\left\{\left[\mathrm{Pd}\left(\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right)\right]_{3}\right\}^{\mathrm{q}-}$ with $\mathrm{q}=-4$ (left hand side) or $\mathrm{q}=-6$ (right hand side). Color code: Pd black, Sn orange, Bi blue. Bond lengths are given Table S7.

Table S7. Bond lengths /pm in calculated anions $\left\{\left[\operatorname{Pd}\left(\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right)\right]_{3}\right\}^{\mathrm{q}^{-}}(\mathrm{q}=4,6)$, and in the cluster anion $\left[\mathrm{Pd}_{3} @ \mathrm{Sn}_{6} \mathrm{Bi}_{8}\right]^{4-}$ in $\mathbf{1}$ as calculated by the same methods or experimentally observed, for comparison.

bond	$\left\{\left[\mathrm{Pd}\left(\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right)\right]_{3}\right\}^{4-}$	$\left\{\left[\mathrm{Pd}\left(\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right)\right]_{3}\right\}^{6-}$	$\left[\mathrm{Pd}_{3} @ \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}($ calc. $)$	$\left[\mathrm{Pd}_{3} @ \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}($ exp. $)$
$\mathrm{Sn}-\mathrm{Bi}$	$295.42-315.85$	$296.94-331.01$	$310.9-311.2$	$302.0(2)-309.4(2)$
$\mathrm{Sn}-\mathrm{Sn}$	$340.69-355.49$	$286.57-338.94$	$293.8-329.5$	$289.8(2)-326.1(2)$
$\mathrm{Pd}-\mathrm{Sn}$	$273.85-321.53$	$272.53-294.43$	$293.3-302.8$	$286.8(2)-302.5(2)$
$\mathrm{Pd}-\mathrm{Bi}$	$282.23-299.75$	$276.53-287.19$	$277.7-278.0$	$272.8(2)-275.2(2)$
$\mathrm{Pd}-\mathrm{Pd}$	$295.04-411.44$	$277.75-319.00$	$280.58-280.73$	$275.6(2)-277.4(2)$
$\mathrm{Bi}-\mathrm{Bi}$	$307.00-308.03^{a}$	$310.01-310.05^{a}$	$317.2-317.5$	$312.4(2)-315.0(2)$

${ }^{a}$ Range of the drawn Bi-Bi contacts; all others are longer than 310.1 pm and thus not shown in Figure S18.

Pathway B

As a second possibility for the formation mechanism of the anion in 1 , we suggest a condensation reaction of three cluster precursors containing eight or nine main group element atoms with interstitial Pd atom, $\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{2}\right]^{\mathrm{q}^{-}},\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{3}\right]^{\mathrm{q}^{-}}$, or $\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{\mathrm{q}^{-}}$; this pathway would be analogous to the formation of condensed or fused icosahedra found in many intermetallic phases [26]. Although the proposed precursor clusters have not yet been isolated, several experimental hints exist in our studies and in the literature for eight atom or nine atom Zintl anions of group 14 or group 15 elements, with or
without interstitial metal atom [27]. A mixed $\mathrm{Sn} / \mathrm{Bi}$ nine atom cage was previously isolated as byproduct at the synthesis of $\left[\mathrm{Zn}_{6} \mathrm{Sn}_{3} \mathrm{Bi}_{8}\right]^{4-}$ [28]. Additionally, a Pd -containing nine atom species $\left[\mathrm{PdSn}_{6} \mathrm{Bi}_{3}\right]^{-}$was indeed detected in the ESI mass spectrum of the reaction solution at the synthesis of compound 1 (see 5.2). In both cases, the precursor clusters would be fragmentation/re-arrangement products of the starting material under release of $\left[\mathrm{Bi}_{2}\right]^{2-}$ units. The precursors for such fusion processes calculated and shown in the following were chosen as first suggestions owing to a combination of features: (a) a suitable formula for the production of the fewest amounts of by-product and (b) diamagnetic compositions, (c) suitable structures providing a $\mathrm{Bi}-\mathrm{Bi}$ bond, (d) relation to a present or previous experimental finding.

A fusion of endohedral eight atom Zintl anions would involve only a few re-arrangment steps of precursor and intermediate species at the formation of the $\left[\mathrm{Pd}_{3} \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ anion (Figure S19). The second by-product of this pathway should be reformed starting material - according to our observation that the latter co-crystallizes with all compounds containing ternary Zintl anions clusters that we have obtained so far.

Figure S19. Schematic drawing of the key step in the formation of the anion in 1, based on the condensation of three precursor clusters $\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{2}\right]^{q^{-}}$into a triply fused cluster anion (pathway B). The endohedral eight-atom clusters are reaction products of three equivalents of the starting material $\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right]^{2-}$ under release of two equivalents of $\left[\mathrm{Bi}_{2}\right]^{2-}$ each, that are (partially) consumed to reform the starting material as by-product of the brutto reaction. Note that $\left[\mathrm{Bi}_{2}\right]^{2-}$ as well as Sn^{0} and $\left[\mathrm{Sn}_{2} \mathrm{Bi}_{2}\right]^{2-}$ were detected as by-products.

DFT calculations of according eight atom cages were performed for $\left[\operatorname{Pd} @ \operatorname{Sn}_{6} \operatorname{Bi}_{2}\right]^{4-}$ and $\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{2}\right]^{6-}$ (Figure S20 and Table S8). In both cases, the geometry optimizations converged into local mimima with bond lengths that are similar to those observed in the ternary cluster anion in $\mathbf{1}$ except the $\mathrm{Pd}-\mathrm{Bi}$ bonds that are significantly longer, and the $\mathrm{Pd}-\mathrm{Sn}$ bonds that are shorter than in the anion in 1.

Figures S20. Result of the DFT geometry optimizations of hypothetical cluster anions $\left[\operatorname{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{2}\right]^{4-}$ (left hand side) and $\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{2}\right]^{6-}$ (right hand side). Color code: Pd black, Sn orange, Bi blue. Bond lengths are given in Table S8.

Table S8. Bond lengths /pm in calculated anions $\left[\operatorname{Pd} @ \operatorname{Sn}_{6} \mathrm{Bi}_{2}\right]^{q^{-}}(q=4,6)$, and in the cluster anion $\left[\mathrm{Pd}_{3} @ \mathrm{Sn}_{6} \mathrm{Bi}_{8}\right]^{4-}$ in $\mathbf{1}$ as calculated by the same methods or experimentally observed, for comparison.

bond	$\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{2}\right]^{4-}$	$\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{2}\right]^{6-}$	$\left[\mathrm{Pd}_{3} @ \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}($ calc. $)$	$\left[\mathrm{Pd}_{3} @ \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}($ exp. $)$
$\mathrm{Sn}-\mathrm{Bi}$	$300.2-300.6$	$305.6-305.6$	$310.9-311.2$	$302.0(2)-309.4(2)$
$\mathrm{Sn}-\mathrm{Sn}$	$285.9-306.4$	$285.2-321.6$	$293.8-329.5$	$289.8(2)-326.1(2)$
$\mathrm{Pd}-\mathrm{Sn}$	$276.3-281.7$	$286.1-292.5$	$293.3-302.8$	$286.8(2)-302.5(2)$
$\mathrm{Pd}-\mathrm{Bi}$	$369.7-369.8$	$302.1-302.2$	$277.7-278.0$	$272.8(2)-275.2(2)$
$\mathrm{Bi}-\mathrm{Bi}$	303.5	308.7	$317.2-317.5$	$312.4(2)-315.0(2)$

Although a fusion analogous to that shown in Figure S19 would come along with a larger amount of by-product, geometry optimizations of nine atom cages with interstitial Pd atoms have been performed for $\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{3}\right]^{3-}$, which was observed in the ESI mass spectrum of the reaction mixture (see 5.2), as well as for $\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{4-}$ and $\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{2-}$, that are based on a trigonal prismatic $\left[\mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{2-}$ anion which was previously obtained as a by-product in the synthesis of $\left[\mathrm{Zn}_{6} \mathrm{Sn}_{3} \mathrm{Bi}_{8}\right]^{4-}$ [27]. For calculation of a variety of isomers of $\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{3}\right]^{3-}$, two Bi atoms were involved in a $\mathrm{Bi}-\mathrm{Bi}$ bond and a third one was placed apart. The starting geometries converged into structures that represent highly distorted, mono-capped square antiprisms. For $\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{2-}$ and $\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{4-}$, the distortion of the resulting mono-capped square antiprism shown in Figure S21, that were obtained as local minimum structures, is only smooth. Other isomers did not converge into reasonable structures with regard to a subsequent condensation of three clusters. Thus, the species shown below may also be viewed as potential precursors in the formation of the anion in $\mathbf{1}$. For $\left[\operatorname{Pd} @ \operatorname{Sn}_{6} \mathrm{Bi}_{3}\right]^{3-}$, the reaction would afford more Bi containing by-product, whereas for $\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{\mathrm{q}^{-}}$, more Sn atoms would be obtained per formula unit of 1, than for the condensation of the eight atom cages. The best structural fit between precursor and final cluster anion is observed for $\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{4-}$ - except some dramatically elongated $\mathrm{Sn}-\mathrm{Bi}$ and $\mathrm{Sn}-$ Sn contacts, which seem to be reasonable for a reactive species that will release some of the Sn atoms.

The final decision on the very precursor species requires the inspection of according reaction energies and assistance by further experiments that are underway.

Figures S21. Result of the DFT geometry optimizations of hypothetical cluster anions $\left[\operatorname{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{3}\right]^{3-}$ (left hand side), $\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{2-}$ (center) and $\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{4-}$ (right hand side). Color code: Pd black, Sn orange, Bi blue. Bond lengths are given in Table S 9 .

Table S9. Bond lengths /pm in calculated anions $\left[\operatorname{Pd} @ \operatorname{Sn}_{9-\mathrm{x}} \mathrm{Bi}_{\mathrm{x}}\right]^{\mathrm{q}^{-}}(\mathrm{x} / \mathrm{q}=3 / 3,2 / 4,2 / 2)$, and in the cluster anion $\left[\mathrm{Pd}_{3} @ \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ in $\mathbf{1}$ as calculated by the same methods or experimentally observed, for comparison.

bond	$\left[\mathrm{Pd} @ \mathrm{Sn}_{6} \mathrm{Bi}_{3}\right]^{3-}$	$\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{2-}$	$\left[\mathrm{Pd} @ \mathrm{Sn}_{7} \mathrm{Bi}_{2}\right]^{4-}$	$\left[\mathrm{Pd}_{3} @ \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ (calc.)	$\left[\mathrm{Pd}_{3} @ \mathrm{Sn}_{8} \mathrm{Bi}_{6}\right]^{4-}$ (exp.)
$\mathrm{Sn}-\mathrm{Bi}$	$299.3-316.42$	$316.0-329.0$	$297.8-356.61$	$310.9-311.2$	$302.0(2)-309.4(2)$
$\mathrm{Sn}-\mathrm{Sn}$	$305.9-332.05$	$307.9-334.5$	$292.3-340.48$	$293.8-329.5$	$289.8(2)-326.1(2)$
$\mathrm{Pd}-\mathrm{Sn}$	$267.3-287.34$	$271.8-282.3$	$268.3-309.85$	$293.3-302.8$	$286.8(2)-302.5(2)$
$\mathrm{Pd}-\mathrm{Bi}$	$282.6-302.57$	$273.8-273.8$	$282.6-289.6$	$277.7-278.0$	$272.8(2)-275.2(2)$
$\mathrm{Bi}-\mathrm{Bi}$	322.0	325.0	315.8	$317.2-317.5$	$312.4(2)-315.0(2)$

Due to the higher plausibility of the involved reactants and their fusion, and owing to the results of DFT calculations of hypothetical intermediates, we tend to favor pathway B, that is, the fusion of preformed cages with interstitial Pd atom. We assume that these species are very reactive and have therefore not been isolable so far. While the eight atom clusters, that are assumed to be even more reactive, have not been detectable at all, the nine atom species were observed in the ESI mass spectrum of the present reaction solution. This - along with more similar structural parameters - may be taken as a hint for the latter to play the key role in the formation of the ternary anion in 1. Apart from the so far unsuccessful isolation of the intermediates, NMR studies might be a useful - although challenging - tool in the final elucidation of the cluster formation mechanisms. However, all attempts to track the formation of the title compound 1 by means of ${ }^{119} \mathrm{Sn}$ NMR studies in solution were unsuccessful so far, which might be aroused by the quadrupole moment of the adjacent Bi nuclei. Reactions with analogous Pt complexes might enable according studies using ${ }^{195} \mathrm{Pt}$ NMR spectroscopy.

8. Micro analysis

The micro analysis of compound $\mathbf{1}$ was performed at the Campbell Microanalytical Laboratory at the University of Otago (Table S10).

Table S10. Micro analytical results for 1 (\% w/w).

atom type	K	Pd	Sn	Bi
measured	$3.1-4.0 \%$	$4.8-6.5 \%$	$18.0-19.7 \%$	$32.0-33.6 \%$
calculated	3.7%	7.6%	22.5%	29.7%

Due to the very high bismuth concentration in the digest, the optimal analytical ranges for the lighter elements could not be used which affected the precision. An alternative composition that would accord to the higher Bi and lower Sn content, " $[\mathrm{K}([2.2 .2] \mathrm{crypt})]_{4}\left[\mathrm{Pd}_{3} \mathrm{Sn}_{7} \mathrm{Bi}_{7}\right]$ ", can be excluded since the compound is diamagnetic whereas the alternative composition would be paramagnetic.

9. References for the Supporting Information

[1] [2.2.2]crypt: 4,7,13,16,21,24-Нexaoxa-1,10-diazabicyclo[8.8.8]hexacosane.
[2] Critchlow, S. C.; Corbett, J. D. Inorg. Chem. 1982, 21, 3286-3290.
[3] Sheldrick, G. M. SHELXTL 5.1, Bruker AXS Inc. 6300 Enterprise Lane, Madison, WI 537191173, USA, 1997.
[4] Absorption correction was applied with the programs X-RED included in X-Area 1.54, STOE \& Cie GmbH, Hilpertstraße 10, D64295 Darmstadt.
[5] a) PLATON: Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7-13; b) SQUEEZE-Routine: van de Sluis, P.; Spek, A. L. Acta Crystallogr. Sect. A 1990, 46, 194-201.
[6] Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1988.
[7] Ziegler, T. Chem. Rev. 1991, 91, 651-667.
[8] Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165-169.
[9] Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346-354.
[10] Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 242, 652-660.
[11] Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. 1997, 97, 119-124.
[12] Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
[13] Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
[14] Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
[15] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
[16] Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563-2569.
[17] Klamt, A.; Schürmann, G. J. Chem. Soc., Perkin Trans. 1993, 2, 799-805.
[18] Schäfer, A.; Klamt, A.; Sattel, D.; Lohrenz, J. C. W.; Eckert, F. Phys. Chem. Chem. Phys. 2000, 2, 2187-2193.
[19] Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
[20] Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833-1840.
[21] gOpenMol, Leif Laaksonen, Center for Scientific Computing, Espoo, Finland, Version 3.0, 2005.
[22] Note that the energies of the charged species have been shifted by -0.9 eV relative to the energies of the neutral compound in order to adjust the energies of the non-bonding $\left[\mathrm{Pd}_{3}\right]$-type MOs. The effect that charge compensation using the COSMO model leads to an energy shift is well-known.
[23] Boys, S. F. Rev. Mod. Phys. 1960, 32, 296-299.
[24] Foster, J. M.; Boys, S. F. Rev. Mod. Phys. 1960, 32, 300-302.
[25] Wang, J.-Q.; Stegmaier, S.; Wahl, B.; Fässler, T. F. Chem. Eur. J. 2010, 16, 1793-1798.
[26] Tillard-Charbonnel, M.; Manteghetti, A.; Belin, C. Inorg. Chem. 2000, 39, 1684-1696.
[27] a) Corbett, J. D. Angew. Chem. Int. Ed. 2000, 39, 670-690; b) Scharfe, S.; Fässler, T. F.; Stegmaier, S.; Hoffmann, S. D.; Ruhland, K. Chem. Eur. J. 2008, 14, 4479-4483; c) Lips, F.; Clérac, R.; Dehnen, S. Angew. Chem. Int. Ed. 2011, 50, 960-964.
[28] Lips, F.; Dehnen, S. Angew. Chem. Int. Ed. 2009, 48, 6435-6438.

