Using river distance and existing hydrography data can improve the geostatistical estimation of fish tissue mercury at unsampled locations

Eric S. Money ${ }^{1,2}$, Dana K. Sackett ${ }^{3}$, D. Derek Aday ${ }^{3}$, and Marc L. Serre ${ }^{1, *}$
${ }^{1}$ Univ. of North Carolina - Chapel Hill, Gillings School of Global Public Health, Dept. of Environmental Sciences and Engineering, Chapel Hill, NC 27599-7438
${ }^{2}$ Duke University, Pratt School of Engineering, Dept. of Civil and Environmental Engineering, Durham, NC 27708

${ }^{3}$ North Carolina State University, Dept. of Biology, Raleigh, NC 27695-7617
*Corresponding Author: marc_serre@unc.edu, 919-966-7014 (phone)

Supporting Information

Pages: 6; Figures: 6; Tables: 3; Movies: 1
Figure S1 depicts the study area and shows data locations for fish tissue mercury, water column mercury, and pH . Tables S1 and S3 summarize the data used in the study. Table S2 describes the estimation scenarios. Figures S 2 and S 3 show scatterplots of the regression between pH and fish mercury and surface water mercury and fish mercury, respectively, along with plots of the residuals. Figure S 4 shows the model residuals as a function of river distance, and Figure S5 shows the distribution of fish species in the study. Figure S6 shows a map of the estimation variance. Movie S1 depicts the spatiotemporal trends in fish tissue at 180-day intervals.

Study Area and Data Locations

Figure S1: Lumber (Left) and Cape Fear (Right) Basins in North Carolina, with locations for Fish Hg (circles), pH (squares), and $W C H g$ (triangles).

Table S1: Data summary for mercury and pH in the Cape Fear and Lumber Basins, 1990-2004

Data Type	\# of Locations	\# of Independent Samples	\# of Samples collocated with Fish Hg Samples
Fish Hg	75	1663	-
pH	33	356	143
Surface Water Hg*	7	80	35
*starts 1995			

Estimation Scenarios

Table S2: Cross-validation scenarios for FishHg estimations using river-BME and Euclidean-BME

Scenario	Metric Used	Hard Data Used	Soft Data Used
I	Euclidean	Measured \log-FishHg	-
II	River	Measured log-FishHg	-
III	River	Measured log-FishHg	Gaussian from log-pH
IV	River	Measured \log-FishHg	Gaussian from $\log -W C H g$

Regression Analysis

Figure S2: (top) Regression scatter plot of pH vs. log-FishHg used to derive FishHg soft data. Dashed lines represent the 95% prediction bounds for new observations; (bottom) scatter plot of the residuals; p -values for the model coefficients were <0.001.

Figure S3: (top) Regression scatter plot of log-SWHg vs. log-FishHg used to generate FishHg soft data; Dashed lines represent the 95% prediction bounds for new observations; (bottom) scatter plot of the residuals; intercept p-value: 0.035 ; variable coefficient p-value: 0.37 .

Figure S4: Scatter plot of model residuals for collocated data as a function of river distance from the farthest downstream point of the combined river network. The ' + ' represents the residuals from the pH model (Equation 1), while the 'o' represents the residuals from the WCHg model (Equation 2).

Table S3: Summary statistics for fish tissue mercury, pH , and surface water mercury used in the study.

Parameter / Statistics	FishHg (ppm)	log- FishHg	pH	\log-pH	SWHg (ppm)	log-SWHg
Mean	0.62	-0.69	6.62	1.88	0.31	5.62
Standard Deviation	0.57	0.64	0.54	0.69	0.13	0.54
Skewness	2.30	-0.31	-2.25	-3.19	0.20	-1.21
Kurtosis	11.5	2.79	12.5	18.1	3.48	3.72
Distribution				\because 1	11	4

Estimation Variance

Figure S5: Distribution of fish species with measurements of fish tissue mercury between 19902004 in the Cape Fear and Lumber River Basins, NC.

Figure S6: river-BME estimation variance $\left(\mathrm{ppm}^{2}\right)$ in the Cape Fear and Lumber Basins on July 23, 1995 (Top); and June 11, 2003 (Bottom).

Movie of Spatiotemporal Trend

Movie S1 can be viewed as an animated GIF at the following online location:
http://www.unc.edu/depts/case/BMElab/studies/HgFish_NC/CapefearLumber_HgFish_1991_2004.GIF
Movie S1: Space/time distribution of FishHg in the Cape Fear and Lumber Basins, every 180 days, between 1991-2004.

