Supporting Information

Dual Catalysis in Enantioselective Oxidopyrylium-Based [5+2] Cycloadditions

Noah Z. Burns, Michael R. Witten, and Eric N. Jacobsen*

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
Email: jacobsen@chemistry.harvard.edu
Contents

1. General Information S1
2. Synthesis and Characterization of Catalysts $\mathbf{1 0}$ and $\mathbf{3 2}$ S2
3. Synthesis and Characterization of Substrates S4
4. Procedures for Cycloadditions and Characterization of Products S22
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Cycloaddition Products S29
6. Chiral HPLC Traces of Scalemic Cycloaddition Products S40
7. Computational Procedures and Results S51
8. Frontier Molecular Orbital Analysis and Intermolecular Reaction Results S62
9. Additional Optimization Studies S65
10. Results with Different Aryl Primary Aminothiourea Catalysts S66
11. Results with Sub-Optimal and Unreactive Substrates S67
12. X-Ray Crystallographic Information S68

1. General Information

Cycloaddition reactions were performed in oven-dried 0.5-dram vials; all other reactions were performed in oven- or flame-dried round bottom flasks unless otherwise noted. The vials and flasks were fitted with rubber septa and reactions were conducted under air unless noted. Stainless steel syringes were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400 mesh) from EM Science or Davisil® (Grade 643, pore size 150 $\AA, 200-425$ mesh) from Sigma-Aldrich. Commercial reagents were purchased from Sigma-Aldrich, Alfa Aesar, or TCI, and used as received with the following exceptions: dichloromethane, toluene, tetrahydrofuran, diethyl ether, 1,4-dioxane, and methanol were dried by passing through columns of activated alumina. Triethylamine and pyridine were distilled from CaH_{2} at 760 torr. Furfural was distilled at 20 torr. n-Butyllithium was titrated using N-benzylbenzamide as an indicator. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were recorded on Varian-Mercury-400 (400 MHz), Inova-500 (500 MHz), or Inova-600 (600 $\mathrm{MHz})$ spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}=\delta 7.27\right)$. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}=\delta 77.0\right)$. Data are represented as follows: chemical shift, multiplicity (br. = broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet,
$\mathrm{m}=$ multiplet), coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using a Bruker Optics Tensor 27 FTIR spectrometer. Optical rotations were measured using a Jasco DIP 370 digital polarimeter. The mass spectral data were obtained on an Agilent Technologies 6120 quadrupole LC/MS spectrometer (when designated ESI, APCI, or ESI-APCI) or on a Bruker micrOTOF-Q II time-of-flight LC/MS spectrometer (when designated ESI-TOF). Chiral HPLC analysis was performed using an Agilent analytical chromatograph with commercial ChiralPak or ChiralCel columns.

Abbreviations: $e e$ - enantiomeric excess, HPLC - high performance liquid chromatography, n - BuLi butyllithium, EDC - 1-(3-(dimethyl-amino)propyl)-3-ethyl-carbodiimide hydrochloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dichloromethane, EtOAc - ethyl acetate, $\mathrm{Et}_{2} \mathrm{O}$ - diethyl ether, MeOH - methanol, EtOH - ethanol, $i \mathrm{PrOH}$ - isopropanol, NEt_{3} - triethylamine, AcOH - acetic acid, BzOH - benzoic acid, DMAP -4-(dimethylamino)pyridine, DBU - 1,8-Diazabicyclo[5.4.0]undec-7-ene, pyr. - pyridine, imid. imidazole, NMO $-N$-Methylmorpholine- N-oxide, TBAF - tetrabutylammonium fluoride, THF tetrahydrofuran, diast. - diastereomer.

2. Synthesis and Characterization of Catalysts $\mathbf{1 0}$ and $\mathbf{3 2}$

Scheme S1. Synthesis of catalysts 10 and 32

1-([1,1':3',1''-terphenyl]-2'-yl)-3-((1R,2R)-2-aminocyclohexyl)thiourea (10):
2,6-diphenylaniline ${ }^{1}(150.0 \mathrm{mg}, 0.611 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.1 \mathrm{~mL})$ and sat. aq. NaHCO_{3} $(3.1 \mathrm{~mL})$ was added. The resulting biphasic solution was cooled to $0^{\circ} \mathrm{C}$ and thiophosgene $(0.061 \mathrm{~mL}$, $0.795 \mathrm{mmol}, 1.3$ equiv) was then carefully added via syringe. The reaction was allowed to warm to room temperature and stirred for 5 h . The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 20 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was then redissolved in hexanes and minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a plug of silica gel, eluting with hexanes, to afford 2,6-diphenylphenylisothiocyanate as a white solid ($170.0 \mathrm{mg}, 97 \%$) which was used directly in the subsequent reaction.

[^0](R, R)-1,2-trans-diaminocyclohexane ${ }^{2}\left(203.0 \mathrm{mg}, 1.78 \mathrm{mmol}, 3.0\right.$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. To this was added dropwise a solution of 2,6-diphenylphenylisothiocyanate ($170.0 \mathrm{mg}, 0.592 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL). The resulting reaction mixture was allowed to warm to room temperature and stir for 3 h . The solution was then concentrated and loaded directly onto silica gel. Column chromatography (silica gel, 95:5 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ afforded clean primary aminothiourea as a slightly yellow foam. This was redissolved in minimal benzene and triturated with hexanes. Filtration and further washing of the solid with hexanes afforded $\mathbf{1 0}$ as a white solid ($170 \mathrm{mg}, 71 \%$).
$\mathbf{R}_{\boldsymbol{f}}=0.44$ (silica gel, 90:10 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$); IR (film) $v_{\max } 3237,3054,2926,2854,2360,2341,1692,1522,755,700,613 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.64-7.29$ (br. m, 13H), 4.03-3.83 (br. s, 1H), 2.24-2.12 (br. ap. tr, 1 H), $1.90-1.76$ (br. ap. d, 1H), $1.70-1.46$ (2 br. s, 3 H), 1.25-1.09 (br. s, 2H), 1.09-1.94 (br. m, 2H);
${ }^{13} \mathbf{C} \mathbf{N M R}^{3}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.3,140.5,138.3,131.1,129.1$ (br. s), 128.9 (br. s), 128.5 (br. s), 62.3, 56.3, 34.8, 32.3, 25.2;

MS (ESI-TOF) calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right] 402.2004$, found 402.1995;
$[\alpha]_{D}{ }^{22}=+38.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

(1R,2R)-2-(9H-carbazol-9-yl)cyclohexanamine (32):

A flame-dried vial was charged sequentially with $2,2^{\prime}$-dibromobiphenyl ($500 \mathrm{mg}, 1.60 \mathrm{mmol}$), (R, R)-1,2-trans-diaminocyclohexane ${ }^{2}(220 \mathrm{mg}, 1.92 \mathrm{mmol}, 1.2$ equiv), copper iodide ($152 \mathrm{mg}, 0.80$ mmol, 0.5 equiv), and potassium phosphate ($747 \mathrm{mg}, 3.52 \mathrm{mmol}, 2.2$ equiv). The vial was sealed and then evacuated and backfilled with nitrogen three times. 1,4-Dioxane ($3.2 \mathrm{~mL}, 0.5 \mathrm{M}$) was added and the sealed vessel was placed in a $100{ }^{\circ} \mathrm{C}$ oil bath and the reaction mixture was stirred vigorously for 24 h. The reaction mixture was allowed to cool to room temperature and then diluted with EtOAc (20 mL), filtered through a pad of celite, and concentrated. Purification by column chromatography (silica gel, $95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) afforded 32 as an off-white solid ($67.2 \mathrm{mg}, 16 \%$, unoptimized).
$\mathbf{R}_{\boldsymbol{f}}=0.45$ (silica gel, 90:10 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$);
IR (film) $\nu_{\max } 2936,2858,1594,1482,1453,1329,1221,910,750,724 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{dd}, J=7.3,16.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.40$ (m, 3H), 7.25 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{ddd}, J=3.9,10.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{td}, J=3.9,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{dq}, J=$ $3.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.26 (br. s, 2H);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) 126.1, 125.5, 120.8, 120.3, 119.2, 111.9, 109.3, 63.4, 52.2, 35.6, 29.6, 26.4, 25.4;
${ }^{2}$ (R, R)-1,2-trans-diaminocyclohexane was resolved according to: Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org. Chem. 1994, 59, 1939-1942.
${ }^{3}{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 0}$ in a variety of solvents at room or elevated temperature all showed broad signals preventing the observation of distinct peaks for all carbons. The obtained X-ray crystal structure also exhibits whole molecular disorder.

MS (ESI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$265.1699, found 265.1691; $[\boldsymbol{\alpha}]_{\boldsymbol{D}}{ }^{25}=+66.8\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$.

3. Synthesis and Characterization of Substrates

Scheme S2. Synthesis of substrate 5c

5-oxo-6-(pent-4-en-1-yl)-5,6-dihydro-2H-pyran-2-yl 4-(methylthio)benzoate (5c):

6-Hydroxy-2-(pent-4-en-1-yl)-2H-pyran-3($6 H$)-one ${ }^{4}$ ($700 \mathrm{mg}, 3.84 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15.4 \mathrm{~mL}, 0.25 \mathrm{M})$ and the flask was cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added sequentially 4-methylthiobenzoic acid ($775 \mathrm{mg}, 4.61 \mathrm{mmol}, 1.2$ equiv), EDC ($884 \mathrm{mg}, 4.61 \mathrm{mmol}, 1.2$ equiv), and DMAP ($563 \mathrm{mg}, 4.61 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and then allowed to warm to room temperature and stirred a further 30 min . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and quenched with $1 \mathrm{~N} \mathrm{HCl}(25 \mathrm{~mL})$. The layers were separated and the organic layer was washed succesively with $1 \mathrm{~N} \mathrm{HCl}(25 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, water (25 mL), and brine (25 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by column chromatography (silica gel, $95: 5$ to $5: 1$ hexanes, $\mathrm{Et}_{2} \mathrm{O}$) to afford $\mathbf{5 c}$ as a yellow oil as a $3: 2$ mixture of diastereomers which solidified upon storage at $-30{ }^{\circ} \mathrm{C}$ ($798 \mathrm{mg}, 63 \%$). [Note- in some instances 4-methylthiobenzoic anhydride was found to coelute with the desired product upon column chromatography. Treatment of this mixture with 1 equiv DMAP (relative to anhydride) in a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH (0.2 M relative to anhydride) instantaneously converted the anhydride to the methyl ester, which could be separated from the desired product under the same chromatography conditions.]
$\mathbf{R}_{f}=0.37,0.44$ (silica gel, 5:1 hexanes/EtOAc);
IR (film) $v_{\max } 3079,2924,2866,1721,1693,1595,1263,1095,1072,907,754 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.78$ (minor diast., dd, $J=1.0,2.9,0.4 \mathrm{H}$), 6.73 (major diast., d, $J=3.4 \mathrm{~Hz}, 0.6 \mathrm{H}$), $6.28-6.27(\mathrm{~m}, 1 \mathrm{H}), 5.81$ - 5.71 (major diast., $\mathrm{m}, 0.6 \mathrm{H}$), $5.69-5.59$ (minor diast., $\mathrm{m}, 0.4 \mathrm{H}$), $5.00-4.84$ (m, 2H), 4.57 (major diast., dd, $J=3.9,7.3 \mathrm{~Hz}, 0.6 \mathrm{H}$), 4.27 (minor diast., dd, $J=4.6,9.5 \mathrm{H}, 0.4 \mathrm{H}$), 2.51 (s, 3 H), 2.04 (q, $J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.0,195.9,165.0,164.9,147.1,147.0,142.8,142.0,138.5,138.2$, $130.4,129.0,128.4,125.3,125.2,115.2,115.1,88.0,87.7,79.8,76.1,33.6,33.5,33.2,29.3,24.9$, 24.1, 15.0;

MS (ESI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 355.0975$, found 355.0994.

[^1]Scheme S3. Synthesis of substrate 11

(E)-6-bromohex-2-ene (S2):

Triphenylphosphine ($20.058 \mathrm{~g}, 76.5 \mathrm{mmol}, 1.8$ equiv) and imidazole ($8.688 \mathrm{~g}, 128 \mathrm{mmol}, 3$ equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL}, 0.28 \mathrm{M})$ and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. To this mixture was slowly added bromine ($3.7 \mathrm{~mL}, 71.8 \mathrm{mmol}, 1.7$ equiv) by syringe and the resulting solution was stirred for 15 min at $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. (E)-4-hexen-1-ol ${ }^{5}(5.0 \mathrm{~mL}$, 42.5 mmol) was then added neat by syringe, and the solution was stirred under nitrogen for a further 45 min at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was washed with $3 \% \mathrm{aq}$. hydrogen peroxide (25 mL), then $1 \mathrm{M} \mathrm{Na} 2 \mathrm{~S}_{2} \mathrm{O}_{3}(2 \times 50 \mathrm{~mL})$. The thiosulfate layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$. The pooled organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The resultant crude white paste was then redissolved in hexanes and minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a plug of silica gel, eluting with hexanes, to afford $\mathbf{S} 2$ as a pale yellow oil ($3.926 \mathrm{~g}, 57 \%$).
Spectroscopic data agree with previously reported data. ${ }^{6}$

(\boldsymbol{E})-1-(furan-2-yl)hept-5-en-1-ol (S3):

Magnesium turnings ($374 \mathrm{mg}, 15.4 \mathrm{mmol}, 5$ equiv) were rigorously flame-dried under vacuum in a round bottom flask attached with a condenser. Once the magnesium had cooled, it was exposed to an atmosphere of nitrogen and suspended in THF ($7.7 \mathrm{~mL}, 0.4 \mathrm{M}$). To this suspension was added sequentially 1,2-dibromoethane activator $(0.01 \mathrm{~mL}, 0.12 \mathrm{mmol})$ then $\mathbf{S} 2(503 \mathrm{mg}, 3.09 \mathrm{mmol})$. This was stirred and gently heated (approx. $40^{\circ} \mathrm{C}$) until an exotherm was observed. The suspension was then stirred for a further 30 min at room temperature, after which the dark suspension was cannulated into a solution of furfural ($0.26 \mathrm{~mL}, 3.1 \mathrm{mmol}, 1$ equiv) in THF (7.7 mL 0.4 M), pre-cooled to $0{ }^{\circ} \mathrm{C}$. This reaction mixture was stirred under an atmosphere of nitrogen at $0^{\circ} \mathrm{C}$ for 1 h . The resulting solution was then washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 15 \mathrm{~mL})$, and the pooled aqueous layers were extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography (silica gel, 9:1 to 3:2 hexanes/EtOAc) to afford $\mathbf{S 3}$ as a colorless oil (393 mg, 71\%).

[^2]$\mathbf{R}_{f}=0.37$ (silica gel, $2: 1$ hexanes/EtOAc); IR (film) $v_{\text {max }} 3375$ (br), 2938, 1505, 1453, 1149, 1008, 967, 914, $736 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=1.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=3.4$
$\mathrm{Hz}, 1 \mathrm{H}), 5.46-5.35(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.60(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.85-$ $1.79(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,142.0,131.2,125.4,110.3,106.0,67.9,35.2,32.5,25.7,18.1$;
MS (ESI-APCI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}-\mathrm{OH}]^{+}$163.1, found 163.2.

(E)-2-(hex-4-en-1-yl)-6-hydroxy-2H-pyran-3(6H)-one (S4):

Alcohol S3 ($521 \mathrm{mg}, 2.89 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 0.3 \mathrm{M})$, and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added solid vanadyl acetylacetonate ($77 \mathrm{mg}, 0.29 \mathrm{mmol}, 0.1$ equiv), then tert-butyl hydroperoxide (0.79 mL of a 5.5 M solution in dodecane, $4.35 \mathrm{mmol}, 1.5$ equiv) by syringe. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , before it was quenched with $1 \mathrm{M} \mathrm{Na} \mathrm{Na}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$ and stirred for a further 30 min . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$ and the pooled organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography (silica gel, 9:1 to $3: 2$ hexanes/EtOAc) to afford $\mathbf{S 4}$ as a colorless oil as a $2: 1$ mixture of diastereomers ($389 \mathrm{mg}, 69 \%$).
$\mathbf{R}_{f}=0.31$ (silica gel, 2:1 hexanes/EtOAc);
IR (film) $\boldsymbol{v}_{\max } 3398$ (br), 2929, 1687, 1438, 1375, 1241, 1153, 1089, 1027, 967, 911, $732 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94$ (minor diast., dd, $J=1.4,10.5 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.90 (major diast., dd, $J=3.7,10.5 \mathrm{~Hz}, 0.67 \mathrm{H}$), 6.15 (minor diast., dd $J=1.4,10.5 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.10 (major diast., d, $J=10.5$ $\mathrm{Hz}, 0.67 \mathrm{H}), 5.67-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.37(\mathrm{~m}, 2 \mathrm{H}), 4.56$ (major diast., dd, $J=3.9,8.0 \mathrm{~Hz}, 0.67 \mathrm{H})$, 4.08 (minor diast., dd, $J=3.4,8.0 \mathrm{~Hz}, 0.33 \mathrm{H}$), 3.81 (minor diast., dd, $J=1.8,7.3 \mathrm{~Hz}, 0.33 \mathrm{H}$), 3.54 (major diast., dd, $J=1.8,5.0,0.67 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.42(\mathrm{~m}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.1,196.6,148.1,144.8,131.0,129.0,127.8,125.6,125.5,91.1$, 87.8, 79.1, $74.4,32.5,30.4,29.4,25.3,25.1,18.1$; MS (ESI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$219.0992, found 219.1005.

(E)-6-(hex-4-en-1-yl)-5-oxo-5,6-dihydro-2H-pyran-2-yl 4-(methylthio)benzoate (11):

Hemiacetal $\mathbf{S 4}(1.330 \mathrm{~g}, 6.78 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(34 \mathrm{~mL}, 0.2 \mathrm{M})$ and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. To this solution was added sequentially, 4-thiomethylbenzoyl chloride ($1.464 \mathrm{~g}, 7.45 \mathrm{mmol}, 1.1$ equiv), pyridine ($0.88 \mathrm{~mL}, 10.88 \mathrm{mmol}, 1.6$ equiv), and DMAP (250 mg , $2.05 \mathrm{mmol}, 0.3$ equiv). The reaction was stirred under nitrogen and allowed to warm to room temperature overnight. The solution was diluted with ethyl acetate (60 mL), then washed with 1 N HCl (2 x 50 mL), saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography (silica gel, $9: 1$ to $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 11 as a white powder as a $2: 1$ mixture of diastereomers (1.286 $\mathrm{g}, 55 \%$). [Note- in some instances 4-methylthiobenzoic anhydride was found to coelute with the desired product upon column chromatography. Treatment of this mixture with 1 equiv DMAP (relative to anhydride) in a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{MeOH}(0.2 \mathrm{M}$ relative to anhydride) instantaneously converted the anhydride to the methyl ester, which could be separated from the
desired product under the same chromatography conditions.]
$\mathbf{R}_{\boldsymbol{f}}=0.15,0.19$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $\nu_{\max } 2920,2361,1721,1695,1593,1437,1401,1327,1261,1178,1094,1067,1013,967$, 922, 841, 757, $689 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.79$
(minor diast., dd, $J=1.5,2.9 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.74 (major diast., d, $J=3.9 \mathrm{~Hz}, 0.67 \mathrm{H}$), $6.28-6.24(\mathrm{~m}, 1 \mathrm{H})$, $5.40-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.56$ (major diast., dd, $J=3.9,7.8 \mathrm{~Hz}, 0.67 \mathrm{H}$), 4.27 (minor diast., dd, $J=4.9,9.8$ $\mathrm{Hz}, 0.33 \mathrm{H}), 2.53-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.41(\mathrm{~m}, 9 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 196.0,165.0,147.1,147.0,142.7,142.0,131.0,130.7,130.4,129.1$, $128.4,125.6,125.5,125.2,88.0,87.7,79.9,76.2,33.3,32.5,32.3,29.4,25.5,24.8,18.1,15.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 369.1131$, found 369.1127.

Scheme S4. Synthesis of substrate 13

(Z)-6-bromohex-2-ene (S5):

Reaction of triphenylphosphine $(20.204 \mathrm{~g}, 77.0 \mathrm{mmol}, 1.8$ equiv $)$, imidazole ($8.745 \mathrm{~g}, 128 \mathrm{mmol}, 3$ equiv), and bromine ($3.8 \mathrm{~mL}, 73.8 \mathrm{mmol}$, 1.7 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL}, 0.27 \mathrm{M}$) followed by (Z)-4-hexen-1-ol ($5.0 \mathrm{~mL}, 42.8 \mathrm{mmol}$) according to $\mathbf{S} \mathbf{2}$ above afforded $\mathbf{S 5}$ as a pale yellow oil (3.341 g , 48\%).
$\mathbf{R}_{f}=0.87$ (silica gel, hexanes);
IR (film) $\nu_{\text {max }} 3014,2928,2855,1436,1245,700,565 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.56-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.29(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.91 (quin, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.63$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 126.6,125.7,33.6,32.7,25.5,13.1$;

(Z)-1-(furan-2-yl)hept-5-en-1-ol (S6):

Grignard formation between magnesium turnings ($2.498 \mathrm{~g}, 103 \mathrm{mmol}, 5$ equiv) and $\mathbf{S 5}(3.341 \mathrm{~g}, 20.5$ mmol) with 1,2 -dibromoethane ($0.05 \mathrm{~mL}, 0.58 \mathrm{mmol}$) was carried out in THF ($50 \mathrm{~mL}, 0.41 \mathrm{M}$) according to $\mathbf{S 3}$ above. Addition of this Grignard reagent to furfural ($1.70 \mathrm{~mL}, 20.5 \mathrm{mmol}, 1$ equiv) in THF (50 mL) according to $\mathbf{S 3}$ above afforded $\mathbf{S 6}$ as a colorless oil after column chromatography (silica gel, 9:1 to 3:2 hexanes/EtOAc) ($2.031 \mathrm{~g}, 55 \%$).
$\mathbf{R}_{\boldsymbol{f}}=0.37$ (silica gel, 2:1 hexanes/EtOAC);
IR (film) $v_{\max } 3375$ (br), 3013, 2936, 2862, 2360, 2341, 1505, 1443, 1404, 1231, 1148, $1006 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=2.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.52-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.60(\mathrm{~m}, 1 \mathrm{H}), 2.56($ br. s., 1 H$), 2.07(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{dd}, J=0.9,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,142.0,130.4,124.4,110.3,106.0,67.9,35.3,26.7,25.7,13.0$; MS (ESI-APCI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}-\mathrm{OH}]^{+}$163.1, found 163.1.

(Z)-2-(hex-4-en-1-yl)-6-hydroxy-2H-pyran-3(6H)-one (S7):

Reacion of $\mathbf{S 6}(2.031 \mathrm{~g}, 11.3 \mathrm{mmol})$, vanadyl acetylacetonate ($300 \mathrm{mg}, 1.13 \mathrm{mmol}, 0.1$ equiv), and tert-butyl hydroperoxide (3.1 mL of a 5.5 M solution in dodecane, $17.1 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(38 \mathrm{~mL}, 0.3 \mathrm{M})$ according to $\mathbf{S} 4$ above afforded $\mathbf{S} 7$ as a colorless oil after column chromatography (silica gel, 9:1 to 3:2 hexanes/EtOAc) as a $2: 1$ mixture of diastereomers ($1.402 \mathrm{~g}, 63 \%$).
$\mathbf{R}_{f}=0.37$ (silica gel, $2: 1$ hexanes/EtoAc);
IR (film) $v_{\max } 3401$ (br), 2929, 1694, 1438, 1373, 1241, 1143, 1091, 1033, 964, 913, $737 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94$ (minor diast., dd, $J=1.4,10.1 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.91 (major diast., dd, $J=3.2,10.3 \mathrm{~Hz}, 0.67 \mathrm{H}$), 6.18 (minor diast., dd, $J=1.6,10.3 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.13 (major diast., d, $J=$ $10.1 \mathrm{~Hz}, 0.67 \mathrm{H}$), $5.70-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.37(\mathrm{~m}, 1 \mathrm{H}), 4.59$ (major diast., dd, $J=4.1,8.4 \mathrm{~Hz}, 0.67 \mathrm{H}$), 4.11 (minor diast., dd, $J=4.1,8.2 \mathrm{~Hz}, 0.33 \mathrm{H}$), 3.10 (minor diast., d, $J=7.3$ $\mathrm{Hz}, 0.33 \mathrm{H}), 2.89$ (major diast., d, $J=5.0 \mathrm{~Hz}, 0.67 \mathrm{H}), 2.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H})$, 1.86-1.78 (minor diast., m, 0.33H), 1.78-1.69 (major diast., m, 0.67 H), $1.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.56-1.47 (m, 2H);
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.5,147.7,144.3,130.3,130.2,129.06,128.0,124.6,91.1,87.9$, $79.1,74.4,30.5,29.5,26.38,25.3,25.2,13.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$219.0992, found 219.1004.

(Z)-6-(hex-4-en-1-yl)-5-oxo-5,6-dihydro-2H-pyran-2-yl 4-(methylthio)benzoate (13):

Reaction of $\mathbf{S 7}$ ($687 \mathrm{mg}, 3.50 \mathrm{mmol}$), 4-thiomethylbenzoyl chloride ($756 \mathrm{mg}, 3.85 \mathrm{mmol}, 1.1$ equiv), pyridine ($0.45 \mathrm{~mL}, 5.56 \mathrm{mmol}, 1.59$ equiv), and DMAP ($130 \mathrm{mg}, 1.06 \mathrm{mmol}, 0.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (18 $\mathrm{mL}, 0.19 \mathrm{M}$) according to $\mathbf{1 1}$ above afforded $\mathbf{1 3}$ as a white gel after column chromatography (silica gel, 9:1 to 3:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) as a $2: 1$ mixture of diastereomers ($835 \mathrm{mg}, 69 \%$).
$\mathbf{R}_{f}=0.15,0.19$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $\nu_{\max } 2924,1720,1695,1593,1491,1437,1402,1327,1262,1177,1094,1067,1013,922$, 840, 756, $689 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.78$ (minor diast., d, $J=2.4 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.73 (major diast., $\mathrm{d}, J=3.4 \mathrm{~Hz}, 0.67 \mathrm{H}$), $6.28-6.24(\mathrm{~m}, 1 \mathrm{H}), 5.46$ - $5.17(\mathrm{~m}, 2 \mathrm{H}), 4.56$ (major diast., dd, $J=3.7,7.6 \mathrm{~Hz}, 0.67 \mathrm{H}$), 4.27 (minor diast., dd, $J=4.4,9.8 \mathrm{~Hz}$, $0.33 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{dq}, J=7.5,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, 1.51-1.43 (m, 2H);
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.1,196.0,165.0,164.9,147.1,147.0,142.8,142.0,130.4,130.2$, $129.9,129.1,128.4,125.2,124.6,124.5,88.0,87.7,79.9,76.1,33.4,29.5,26.7,26.5,25.5,24.7,15.0$, 13.0;

MS (ESI-TOF) calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 369.1131$, found 369.1133.

Scheme S5. Synthesis of substrate 15

6-(5-methylhex-4-en-1-yl)-5-oxo-5,6-dihydro-2H-pyran-2-yl 4-(methylthio)benzoate (15):
Grubbs' Catalyst, 2nd Generation ($29 \mathrm{mg}, 0.034 \mathrm{mmol}, 0.03$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ in a sealed tube. To the solution was added by syringe $\mathbf{5 c}(378 \mathrm{mg}, 1.14 \mathrm{mmol})$, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ then 2-methyl-2-butene ($3.3 \mathrm{~mL}, 31.1 \mathrm{mmol}, 27$ equiv). The reaction was stirred at $39^{\circ} \mathrm{C}$ overnight. The crude mixture was concentrated and purified by flash chromatography (silica gel, 9:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) to afford $\mathbf{1 5}$ as a colorless oil as a $2: 1$ mixture of diastereomers ($397 \mathrm{mg}, 97 \%$). $\mathbf{R}_{f}=0.13,0.17$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $\nu_{\max } 2925,1725,1698,1594,1438,1402,1328,1235,1177,1095,10711013,930,841,758$, $690 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.79$ (minor disast., dd, $J=1.5,2.9 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.74 (major diast., d, $J=3.9 \mathrm{~Hz}, 0.67 \mathrm{H}$), $6.29-6.25$ (m, 1 H), $5.12-5.05$ (major diast., m, 0.67 H), $5.01-4.95$ (minor diast., m, 0.33 H), 4.56 (major diast., dd, J $=3.9,7.8 \mathrm{~Hz}, 0.67 \mathrm{H}$), 4.30 (minor diast., dd, $J=4.6,9.5 \mathrm{~Hz}, 0.33 \mathrm{H}), 2.54-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.81$ $(\mathrm{m}, 3 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 196.0,165.0,147.0,142.8,141.9,132.0,130.4,129.1,128.5,125.2$, $124.3,124.0,88.0,87.7,80.0,79.2,33.4,29.5,27.9,27.7,25.9,25.8,25.1,17.9,17.8,15.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 383.1293$, found 383.1276.

Scheme S6. Synthesis of substrate 17

(\boldsymbol{Z})-(5-bromopent-1-en-1-yl)benzene (S8):

Reaction of triphenylphosphine $(10.006 \mathrm{~g}, 38.1 \mathrm{mmol}, 1.8$ equiv), imidazole ($4.319 \mathrm{~g}, 63.4 \mathrm{mmol}, 3$ equiv), and bromine ($1.9 \mathrm{~mL}, 36.9 \mathrm{mmol}, 1.7$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(71 \mathrm{~mL}, 0.30 \mathrm{M}$) followed by (Z)-5-phenylpent-4-en-1-ol ${ }^{7}(3.435 \mathrm{~g}, 21.2 \mathrm{mmol})$ according to $\mathbf{S} \mathbf{2}$ above afforded $\mathbf{S 8}$ as a pale yellow

[^3]oil (4.646 g, 97\%).
Spectroscopic data agree with previously reported data. ${ }^{8}$

(Z)-1-(furan-2-yl)-6-phenylhex-5-en-1-ol (S9):

Grignard formation between magnesium turnings ($2.514 \mathrm{~g}, 103 \mathrm{mmol}, 8$ equiv) and $\mathbf{S 8}(2.910 \mathrm{~g}, 12.9$ mmol) with 1,2 -dibromoethane ($0.05 \mathrm{~mL}, 0.58 \mathrm{mmol}$) was carried out in THF ($32 \mathrm{~mL}, 0.40 \mathrm{M}$) according to $\mathbf{S 3}$ above. Addition of this Grignard reagent to furfural ($1.07 \mathrm{~mL}, 12.9 \mathrm{mmol}, 1$ equiv) in THF (32 mL) according to $\mathbf{S 3}$ above afforded $\mathbf{S} \mathbf{9}$ as a yellow oil after column chromatography (silica gel, $9: 1$ to $3: 2$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)(2.307 \mathrm{~g}, 74 \%)$.
$\mathbf{R}_{\boldsymbol{f}}=0.43$ (silica gel, $2: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 3355$ (br), 3009, 2939, 2862, 1599, 1494, 1447, 1151, 1170, 1070, 1008, 915, 807, 767, 737, $699 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.26(\mathrm{~m}, 6 \mathrm{H}), 6.47(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=2.0,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dt}, J=7.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{qd}, J=$ $1.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0,142.2,137.9,132.7,129.5,129.0,128.4,126.8,110.4,106.1$, 67.8, 35.4, 28.5, 26.1;

MS (ESI-APCI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}-\mathrm{OH}]^{+}$225.1, found 225.2.

(Z)-6-hydroxy-2-(5-phenylpent-4-en-1-yl)-2H-pyran-3(6H)-one (S10):

Reacion of $\mathbf{S 9}$ ($325 \mathrm{mg}, 1.34 \mathrm{mmol}$), vanadyl acetylacetonate ($37 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.1$ equiv), and tert-butyl hydroperoxide (0.37 mL of a 5.5 M solution in dodecane, $2.04 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.5 \mathrm{~mL}, 0.3 \mathrm{M})$ according to $\mathbf{S 4}$ above afforded $\mathbf{S 1 0}$ as a colorless oil after column chromatography (silica gel, 9:1 to 3:2 hexanes/EtOAc) as a 9:1 mixture of diastereomers ($245 \mathrm{mg}, 70 \%$).
$\mathbf{R}_{f}=0.26$ (silica gel, $2: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 3400$ (br), 3009, 2927, 2862, 1687, 1494, 1446, 1371, 1237, 1150, 1092, 1027, 917, 801, $769,699 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.32 \mathrm{~Hz}$, 1 H), 6.89 (minor diast., dd, $J=1.5,10.4 \mathrm{~Hz}, 0.11 \mathrm{H}$), 6.85 (major diast., dd, $J=3.4,10.3 \mathrm{~Hz}, 0.89 \mathrm{H}$), 6.44 (major diast., d, $J=11.2 \mathrm{~Hz}, 0.89 \mathrm{H}$), 6.40 (minor diast., d, $J=15.6 \mathrm{~Hz}, 0.11 \mathrm{H}$), 6.12 (minor diast., dd, $J=1.5,10.3 \mathrm{~Hz}, 0.11 \mathrm{H}$), 6.08 (major diast., d, $J=10.3 \mathrm{~Hz}, 0.89 \mathrm{H}$), 5.66 (dt, $J=7.2,11.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.57 (dd, $J=3.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.60 (minor diast., dd, $J=3.9,7.8 \mathrm{~Hz}, 0.11 \mathrm{H}$), 4.54 (major diast., dd, $J=3.9,8.3 \mathrm{~Hz}, 0.89 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-$ 1.55 (m, 2H);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.1,196.7,148.3,144.9,137.9,137.8,132.6,132.5,129.6,129.5$, $129.0,128.9,128.8,128.4,127.7,126.8,126.2,91.1,87.8,78.8,74.1,33.0,30.3,29.4,28.4,25.6$;

[^4]
(Z)-5-oxo-6-(5-phenylpent-4-en-1-yl)-5,6-dihydro-2H-pyran-2-yl 4-(methylthio)benzoate (17):

Reaction of $\mathbf{S 1 0}$ ($1.107 \mathrm{~g}, 4.29 \mathrm{mmol}$), 4-thiomethylbenzoyl chloride ($926 \mathrm{mg}, 4.71 \mathrm{mmol}, 1.1$ equiv), pyridine ($0.56 \mathrm{~mL}, 6.92 \mathrm{mmol}, 1.62$ equiv), and DMAP ($157 \mathrm{mg}, 1.29 \mathrm{mmol}, 0.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (21 $\mathrm{mL}, 0.2 \mathrm{M}$) according to $\mathbf{1 1}$ above afforded $\mathbf{1 7}$ as a yellow oil after column chromatography (silica gel, $9: 1$ to $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) as a $9: 1$ mixture of diastereomers ($1.010 \mathrm{~g}, 58 \%$).
$\mathbf{R}_{\boldsymbol{f}}=0.15,0.20$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 2924,1721,1698,1593,1492,1402,1328,1264,1177,1094,1069,1013,928,915$, 841, 757, $700,631 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.15$ (major diast., dd, $J=3.3$, $10.6 \mathrm{~Hz}, 0.89 \mathrm{H}$), 7.00 (minor diast., dd, $J=3.9,10.4 \mathrm{~Hz}, 0.11 \mathrm{H}$), 6.76 (major diast., d, $J=3.9 \mathrm{~Hz}$, 0.89 H), 6.74 (minor, diast., d, $J=3.9 \mathrm{~Hz}, 0.11 \mathrm{H}$), 6.41 (minor diast., d, $J=11.2 \mathrm{~Hz}, 0.11 \mathrm{H}$), 6.35 (major diast., d, $J=15.6 \mathrm{~Hz}, 0.89 \mathrm{H}$), 6.33 (major diast., m, 0.89 H), $6.26(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 0.11 \mathrm{H}), 5.64$ (dt, $J=7.1,11.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.61 (major diast., dd, $J=3.9,7.4 \mathrm{~Hz}, 0.89 \mathrm{H}$), 4.57 (minor, diast., dd, $J=$ $3.9,7.3 \mathrm{~Hz}, 0.11 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 195.9,195.8,164.9,147.1,147.0,142.9,142.0,137.8,132.5,132.2$, $130.4,130.3,129.6,129.5,129.0,128.9,128.5,128.4,126.8,126.7,126.2,125.3,125.2,88.1,87.7$, 79.7, 76.1, 33.2, 29.6, 28.5, 28.2, 25.9, 25.1, 15.0;

MS (ESI-TOF) calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 431.1288$, found 431.1289.

Scheme S7. Synthesis of substrate 19

(E)-6-(6-ethoxy-6-oxohex-4-en-1-yl)-5-oxo-5,6-dihydro-2H-pyran-2-yl 4-(methylthio)benzoate (19):

A microwave vial was charged with $\mathbf{5 c}(199.0 \mathrm{mg}, 0.599 \mathrm{mmol})$ and Grubbs' Catalyst, 2nd Generation $(25.0 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.05$ equiv). The vial was capped and then purged with nitrogen before the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}, 0.2 \mathrm{M})$. Ethyl acrylate ($0.260 \mathrm{~mL}, 2.40 \mathrm{mmol}$, 4.0 equiv) was introduced via syringe and the vial was then placed in a $40{ }^{\circ} \mathrm{C}$ oil bath and stirred for 22 h . The reaction mixture was then concentrated and chromatographed on silica gel to afford 19 as a slightly dark oil as a $3: 2$ mixture of diastereomers ($180.0 \mathrm{mg}, 74 \%$).
$\mathbf{R}_{f}=0.11,0.17$ (silica gel, 5:1 hexanes/EtOAc);
IR (film) $v_{\max } 2926,2867,1714,1593,1262,1176,1094,1067,924,757 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.90$ (major diast., dt, $J=6.8,15.6 \mathrm{~Hz}, 0.6 \mathrm{H}$), 6.81 (minor diast., dt, $J=6.8,15.6 \mathrm{~Hz}, 0.4 \mathrm{H}$), $6.79-6.71$ (m, 1 H), $6.28-6.24(\mathrm{~m}, 1 \mathrm{H}), 5.77$ (major diast., dt, $J=1.5,15.6 \mathrm{~Hz}, 0.6 \mathrm{H}$), $5.71-5.66$ (minor diast., m, 0.4 H), 4.55 (major diast., dd, $J=3.9,7.8 \mathrm{~Hz}, 0.6 \mathrm{H}$), 4.26 (minor diast., dd, $J=5.1,9.0 \mathrm{~Hz}, 0.4 \mathrm{H}$), 4.17-4.11 (m, 2H), 2.51 (s, 3H), 2.21-2.16(m, 1H), 2.14-1.73(m, 3H), 1.61-1.54 (m, 2H), 1.25 (dt, $J=2.0,6.8 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.6,166.8,166.7,165.0,164.8,148.6,148.2,147.3,147.1,143.1$,
$142.1,130.4,129.0,128.6,125.2,122.1,122.0,88.1,87.6,79.5,75.9,60.4,32.9,32.0,31.9,29.3$, 24.1, 23.4, 14.9, 14.5;

MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 427.1186$, found 427.1190.

Scheme S8. Synthesis of substrate 21

6-((tert-butyldimethylsilyl)oxy)-6-(furan-2-yl)hexane-1,2-diol (S11):
1-(furan-2-yl)hex-5-en-1-ol ${ }^{9}$ ($2.096 \mathrm{~g}, 12.6 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(63 \mathrm{~mL}, 0.2 \mathrm{M})$ under a nitrogen atmosphere and cooled to $0{ }^{\circ} \mathrm{C}$. Imidazole ($2.06 \mathrm{~g}, 30.3 \mathrm{mmol}, 2.4$ equiv) was added to the reaction mixture follwed by tert-butyldimethylsilyl chloride ($2.28 \mathrm{~g}, 15.1 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was allowed to warm to room temperature and stirred for 30 min . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50$ $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ were added and the layers were separated. The organic layer was washed sequentially with water $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ and the organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford the silyl ether as a slightly yellow oil ($3.398 \mathrm{~g}, 96 \%$). This material was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(9: 1,61 \mathrm{~mL}$ total volume, 0.2 M$)$ and cooled to $0{ }^{\circ} \mathrm{C}$. N-Methylmorpholine- N-oxide $(2.129 \mathrm{~g}, 18.2 \mathrm{mmol}, 1.5$ equiv) was added followed by osmium tetroxide (1.52 mL of a $2.5 \mathrm{wt} . \%$ solution in tert-butanol, $0.121 \mathrm{mmol}, 0.01$ equiv). The reaction mixture was kept at $0{ }^{\circ} \mathrm{C}$ for 30 min then allowed to warm to room temperature. After stirring for 3 h , $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$ was added and the mixture was stirred overnight. Sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and EtOAc (150 mL) were added and the layers were separated. The aqueous layer was further extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by column chromatography (silica gel, 2:1 to $1: 1$ hexanes/EtOAc) then afforded S11 as a clear oil ($3.55 \mathrm{~g}, 89 \%$ overall).
$\mathbf{R}_{\boldsymbol{f}}=0.08$ (silica gel, $2: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 3368$ (br), 2930, 2858, 2360, 1462, 1361, 1344, 1254, 1075, 1006, 835, 776, $734 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.28(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (td, $J=1.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.73(\mathrm{~m}$, $3 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}$, 3H);
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.4,141.5,110.2,106.0,72.4,68.6,67.0,37.0,33.1,26.0,21.6$,

[^5]18.4, -4.7;

MS (ESI-TOF) calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 337.1806$, found 337.1820.

5-((tert-butyldimethylsilyl)oxy)-5-(furan-2-yl)pentanal (S12):

Diol S11 (1.003 g, 3.19 mmol$)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL}, 0.1 \mathrm{M})$ and to this solution was added sodium periodate immobilized on silica gel ${ }^{10}$ ($6.36 \mathrm{~g}, 2 \mathrm{~g}$ per mmol substrate). The reaction was vigorously stirred under nitrogen for 30 minutes. The resulting suspension was filtered through a sintered glass funnel, and the silica gel was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The filtrate was concentrated to afford S12 as a colorless oil which was used immediately in the subsequent Wittig olefination ($848 \mathrm{mg}, 94 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.74(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=0.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=$ $1.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=5.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{td}, J=1.6,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.91-1.57 (m, 4H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H})$.

(E)-methyl 7-((tert-butyldimethylsilyl)oxy)-7-(furan-2-yl)-2-methylhept-2-enoate (S13):

Aldehyde $\mathbf{S 1 2}(848 \mathrm{mg}, 3.00 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.5 \mathrm{~mL}, 0.26 \mathrm{M})$ and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added known ylide methyl 2-(triphenylphosphoranylidene)propanoate ${ }^{11}(1.361 \mathrm{~g}, 3.91 \mathrm{mmol}, 1.3$ equiv) and the solution was allowed to warm to room temperature. The reaction was stirred under nitrogen for 4 h until TLC indicated complete disappearance of $\mathbf{S 1 2}$. The resulting solution was concentrated and purified by flash chromatography (silica gel, 9:1 to 3:1 hexanes/EtOAc) to afford $\mathbf{S 1 3}$ as a colorless oil (1.048 g, 99\%).
$\mathbf{R}_{\boldsymbol{f}}=0.15$ (silica gel, hexanes);
IR (film) $\boldsymbol{v}_{\max } 2930,2361,1715,1256,1089,1006,835,776,734 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, J=0.92,1 \mathrm{H}), 6.75(\mathrm{td}, J=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=2.1$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=5.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{q}, J=7.8 \mathrm{~Hz}$, $2 H), 1.91-1.74(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}$, 3 H);
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.8,157.4,142.5,141.5,127.9,110.2,105.9,68.5,51.9,36.8,28.7$, $26.0,24.6,18.4,12.6,-4.7,-4.9$;

MS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$375.2, found 375.2.

(E)-methyl 7-(furan-2-yl)-7-hydroxy-2-methylhept-2-enoate (S14):

Ester $\mathbf{S 1 3}(1.096 \mathrm{~g}, 3.11 \mathrm{mmol})$ was dissolved in THF $(21 \mathrm{~mL}, 0.15 \mathrm{M})$ and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. To this solution was added by syringe TBAF (1.0 M in THF, $4.7 \mathrm{~mL}, 4.7 \mathrm{mmol}, 1.5$ equiv). The reaction was stirred under nitrogen for 2 h , until TLC indicated complete disappearance of

[^6]S13. The solution was diluted with ethyl acetate (40 mL), then washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The aqueous layer was then extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$), and the pooled organic layers were washed with brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography (silica gel, $9: 1$ to $3: 2$ hexanes/EtOAc) to afford $\mathbf{S 1 4}$ as a colorless oil ($707 \mathrm{mg}, 95 \%$).
$\mathbf{R}_{f}=0.11$ (silica gel, $4: 1$ hexanes/EtOAc);
IR (film) $\nu_{\max } 3435$ (br), 2949, 1709, 1648, 1436, 1259, 1090, 1008, $737 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{dd}, J=1.0,2.0,1 \mathrm{H}), 6.72(\mathrm{td}, J=1.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=$ $2.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.18$ $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 1 \mathrm{H}) ;$
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 168.9,159.9,142.3,142.1,128.0,110.3,106.1,67.7,51.9,35.3,28.5$, 24.8, 12.5;

MS (APCI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}-\mathrm{OH}]^{+}$221.1, found 221.1.

(E)-methyl 6-(6-hydroxy-3-oxo-3,6-dihydro-2H-pyran-2-yl)-2-methylhex-2-enoate (S15):

Reacion of $\mathbf{S 1 4}$ ($707 \mathrm{mg}, 2.97 \mathrm{mmol}$), vanadyl acetylacetonate ($80 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.1$ equiv), and tert-butyl hydroperoxide (0.81 mL of a 5.5 M solution in dodecane, $1.50 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL}, 0.3 \mathrm{M})$ according to $\mathbf{S 4}$ above afforded $\mathbf{S 1 5}$ as a colorless oil after column chromatography (silica gel, $4: 1$ to $1: 1$ hexanes/EtOAc) as a $2: 1$ mixture of diastereomers ($623 \mathrm{mg}, 83 \%$).
$\mathbf{R}_{f}=0.37$ (silica gel, $1: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 3412$ (br), 2952, 1690, 1648, 1437, 1370, 1264, 1090, 1029, $746 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 6.93$ (minor diast., dd, $J=0.9,9.8 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.90 (major diast., dd, J $=3.2,10.1 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.11$ (minor diast., dd, $J=1.1,10.3 \mathrm{~Hz}, 0.33 \mathrm{H}), 6.06$ (major diast., d, $J=10.5 \mathrm{~Hz}, 0.67 \mathrm{H}$), $5.65-5.59(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=3.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (br. s, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.61$ - 1.53 (m, 2H);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.0,196.5,169.3,148.7,145.2,142.8,142.6,128.8,127.9,127.5$, 91.1, 87.8, 78.7, 73.8, 52.1, 30.4, 29.5, 28.6, 24.4, 24.2, 12.6;

MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$277.1046, found 277.1073.

(E)-6-(6-methoxy-5-methyl-6-oxohex-4-en-1-yl)-5-oxo-5,6-dihydro-2H-pyran-2-yl

 4-(methylthio)benzoate (21):Reaction of S15 ($623 \mathrm{mg}, 2.45 \mathrm{mmol}$), 4-methylthiobenzoic acid ($536 \mathrm{mg}, 3.19 \mathrm{mmol}, 1.3$ equiv), EDC ($661 \mathrm{mg}, 3.45 \mathrm{mmol}, 1.4$ equiv), and DMAP ($391 \mathrm{mg}, 3.20 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL , 0.2 M) according to $\mathbf{5 c}$ above afforded 21 as a colorless oil after column chromatography (silica gel, 9:1 to $3: 2$ hexanes/EtOAc) as a $2: 1$ mixture of diastereomers ($293 \mathrm{mg}, 30 \%$).
$\mathbf{R}_{f}=0.22$ (silica gel, $4: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 2951,2360,1709,1650,1593,1436,1260,1178,1094,1069,924,758 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{dd}, J=0.9,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.01$ (major diast., $\mathrm{td}, J=3.2,10.6 \mathrm{~Hz}, 0.67 \mathrm{H}$), 6.89 (minor diast., dd, $J=3.7,10.2 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.81 (major diast., dd, J $=1.4,2.7 \mathrm{~Hz}, 0.67 \mathrm{H}$), $6.76-6.70$ (minor diast. x $2, \mathrm{~m}, 0.66 \mathrm{H}$), 6.65 (major diast., td, $J=1.4,7.3 \mathrm{~Hz}$,
0.67 H), $6.31-6.26(\mathrm{~m}, 1 \mathrm{H}), 4.57$ (minor diast., dd, $J=3.9,7.6 \mathrm{~Hz}, 0.33 \mathrm{H}$), 4.29 (major diast., dd, $J=$ $5.0,9.2 \mathrm{~Hz}, 0.67 \mathrm{H}$), 3.72 (major diast., $\mathrm{s}, 2 \mathrm{H}$), 3.71 (minor diast., $\mathrm{s}, 1 \mathrm{H}$), $2.53(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.22$ - 1.54 (m, 9H);
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.9,195.7,174.9,171.8,168.7,164.9,147.3,147.1,143.1,142.1$, $141.9,141.6,130.3,129.0,128.6,128.2,125.2,88.1,87.6,87.3,79.6,76.0,53.3,51.9,47.3,47.2$, $45.8,35.4,33.1,29.5,28.5,28.4,24.6,24.0,21.3,14.9,12.5 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 427.1186$, found 427.1184 .

Scheme S9. Synthesis of substrate 23

1-(furan-2-yl)hexa-4,5-dien-1-ol (S16):

Freshly distilled furan ($0.952 \mathrm{~mL}, 13.0 \mathrm{mmol}, 1.3$ equiv) was dissolved in THF ($15 \mathrm{~mL}, 0.87 \mathrm{M}$ relative to furan) under an atmosphere of nitrogen and the resulting mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. $n-\mathrm{BuLi}(5.71 \mathrm{~mL}$ of a 2.1 M solution in hexanes, $12.0 \mathrm{mmol}, 1.2$ equiv) was introduced dropwise via syringe. After addition, the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 30 min . A separate flask was charged with a solution of 4,5-hexadien-1-al ${ }^{12}(0.961 \mathrm{~g}$, 10.0 mmol) in THF ($15 \mathrm{~mL}, 0.67 \mathrm{M}$ in aldehyde) and this mixture was cooled to $0{ }^{\circ} \mathrm{C}$. The furan-2-yllithium solution was then added via cannula. An additional amount of THF (3 mL) was used in order to ensure a quantitative transfer. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min before the careful addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. $\mathrm{EtOAc}(50 \mathrm{~mL})$ was added and the layers were separated. The organic layer was washed with brine $(20 \mathrm{~mL})$, and the combined aqueous layers were extracted with EtOAc (2 x 50 mL). The combined organic layers were then dried over MgSO_{4}, filtered, and concentrated. Purification by column chromatography (silica gel, 95:5 hexanes/EtOAc) afforded S16 as a clear oil ($910 \mathrm{mg}, 55 \%$).
$\mathbf{R}_{f}=0.37$ (silica gel, $4: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 3468$ (br), 2931, 2859, 1955, 1760, 1698, 1010, 842, 787, $738 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=1.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16$ (quin, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.72$ (quin, $J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.06(\mathrm{~m}$, $2 \mathrm{H}), 2.00(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 208.8,156.7,142.2,110.4,106.2,89.5,75.6,67.4,34.9,24.4$;

6-hydroxy-2-(penta-3,4-dien-1-yl)-2H-pyran-3(6H)-one (S17):

Reaction of $\mathbf{S 1 6}$ ($900 \mathrm{mg}, 5.48 \mathrm{mmol}$), vanadyl acetylacetonate ($145 \mathrm{mg}, 0.548 \mathrm{mmol}, 0.1$ equiv), and tert-butyl hydroperoxide (1.5 mL of a 5.5 M solution in dodecane, $8.22 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(27 \mathrm{~mL}, 0.2 \mathrm{M})$ according to $\mathbf{S 4}$ above afforded $\mathbf{S} 17$ as a colorless oil after column chromatography

[^7](silica gel, 9:1 to 7:3 hexanes/EtOAc) as a 7:3 mixture of diastereomers ($745 \mathrm{mg}, 75 \%$).
$\mathbf{R}_{f}=0.13$ (silica gel, $4: 1$ hexanes/EtOAc);
IR (film) $v_{\text {max }} 3431$ (br), 2926, 1726, 1065, 995, 913, 848, $731 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00$ (minor diast., dd, $J=1.8,10.3 \mathrm{~Hz}, 0.3 \mathrm{H}$), 6.95 (major diast., dd, J $=3.5,10.3 \mathrm{~Hz}, 0.7 \mathrm{H}$), 6.21 (minor diast., dd, $J=1.5,10.3 \mathrm{~Hz}, 0.3 \mathrm{H}$), 6.17 (major diast., dd, $J=0.6$, $10.3 \mathrm{~Hz}, 0.7 \mathrm{H}$), $5.73-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.69$ (major diast., dd, J $=3.7,8.3 \mathrm{~Hz}, 0.7 \mathrm{H}$), 4.20 (minor diast., ddd, $J=1.2,3.7,8.6 \mathrm{~Hz}, 0.3 \mathrm{H}$), 3.36 (minor diast., br. s, 0.3 H), 3.10 (major diast., br. s, 0.7 H), 2.31-2.18 (m, 2H), 2.17-2.10(m, 1H), 2.01-1.92 (minor diast., m, 0.3 H), 1.88 (dtd, $J=5.7,8.1,13.9 \mathrm{~Hz}, 0.7 \mathrm{H})$, ;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 208.9,196.6,196.2,147.8,144.4,129.0,127.9,91.1,89.3,87.9,78.2$, 75.5, 73.5, 30.2, 29.2, 23.8;

5-0xo-6-(penta-3,4-dien-1-yl)-5,6-dihydro-2H-pyran-2-yl 4-(methylthio)benzoate (23):

Reaction of $\mathbf{S 1 7}$ ($656 \mathrm{mg}, 3.64 \mathrm{mmol}$), 4-thiomethylbenzoyl chloride ($1.019 \mathrm{~g}, 5.46 \mathrm{mmol}, 1.5$ equiv), pyridine ($294 \mu \mathrm{~L}, 3.64 \mathrm{mmol}, 1.0$ equiv), and DMAP ($222 \mathrm{mg}, 1.82 \mathrm{mmol}, 0.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (18 $\mathrm{mL}, 0.2 \mathrm{M}$) according to $\mathbf{1 1}$ above afforded $\mathbf{2 3}$ as a slightly yellow oil after purification by column chromatography (silica gel, $95: 5$ to $5: 1$ hexanes $/ E t O A c$) as a $2: 1$ mixture of diastereomers (637 mg , 53\%).
$\mathbf{R}_{f}=0.33,0.38$ (silica gel, 4:1 hexanes/EtOAc);
IR (film) $\nu_{\max } 2924,2857,1954,1720,1693,1593,1261,1179,1094,1066,1012,921,839,756,688$ cm^{-1};
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.80$ (minor diast., dd, $J=1.0,2.9 \mathrm{~Hz}, 0.33 \mathrm{H}$), 6.74 (major diast., d, $J=3.4 \mathrm{~Hz}, 0.67 \mathrm{H}$), $6.29-6.25(\mathrm{~m}, 1 \mathrm{H})$, 5.09-5.01 (m, 1H), 4.64-4.55 (m, 2H), 4.54-4.48 (major diast., m, 0.67H), 4.34 (minor diast., dd, J $=4.4,9.3 \mathrm{~Hz}, 0.33 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.04(\mathrm{~m}, 3 \mathrm{H}), 2.03-1.94$ (minor diast., $\mathrm{m}, 0.33 \mathrm{H}), 1.91-$ 1.82 (major diast., $\mathrm{m}, 0.67 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 195.9,165.0,164.9,147.1,147.0,142.8,141.9,130.4,129.0,128.6$, $128.4,125.2,89.1,89.0,88.1,87.6,79.1,75.8,75.4,75.2,32.9,29.2,24.0,23.6,15.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 353.0818$, found 353.0809.

Scheme S10. Synthesis of substrate 25

1-(furan-2-yl)hepta-5,6-dien-1-ol (S18):

2-(2-(hexa-4,5-dien-1-yl)-1,3-dithian-2-yl)furan ${ }^{13}$ ($1.437 \mathrm{~g}, 7.71 \mathrm{mmol}$) was placed in a round bottom flask and azeotroped with benzene (10 mL). Under an atmosphere of nitrogen, THF ($19.3 \mathrm{~mL}, 0.4 \mathrm{M}$) was added and the solution was cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(3.84 \mathrm{~mL}$ of a 2.01 M solution in hexanes, $7.71 \mathrm{mmol}, 1.0$ equiv) was introduced dropwise via syringe and the resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . A solution of 6-bromohexa-1,2-diene ${ }^{14}(1.366 \mathrm{~g}, 8.48 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was then added via cannula to the lithiated dithiane at $-78{ }^{\circ} \mathrm{C}$. An additional amount of THF (5 mL) was used to ensure quantitative transfer. The reaction mixture was then allowed to warm to room temperature and stir for 30 min . The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with the careful addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL}) . \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and the layers were separated. The organic layer was washed with brine (20 mL), and the combined aqueous layers were extracted again with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. Purification by column chromatography (silica gel, 1:0 to $95: 5$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) afforded the allenyldithiane ($1.68 \mathrm{~g}, 82 \%$). A portion of this dithiane ($1.62 \mathrm{~g}, 6.08 \mathrm{mmol}$) was then dethioacetalized according to the method of Stork and Zhao ${ }^{15}$ with bis(trifluoracetoxy)iodobenzene ($3.92 \mathrm{~g}, 9.12 \mathrm{mmol}, 1.5$ equiv) to give the ketone (\sim quant.) which was immediatedly dissolved in EtOH ($20 \mathrm{~mL}, 0.3 \mathrm{M}$) under nitrogen and cooled to $0{ }^{\circ} \mathrm{C}$. Sodium borohydride ($230 \mathrm{mg}, 6.08 \mathrm{mmol}$, 1.0 equiv) was added portionwise and the resultant mixture was allowed to warm to room temperature. Stirring was continued for 2 h before the careful addition of sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. $\mathrm{EtOAc}(50 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$ were added and the layers were then separated. The aqueous layer was further extracted with $\mathrm{EtOAc}(2 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by column chromatography (silica gel, $95: 5$ to $5: 1$ hexanes/EtOAc) then afforded $\mathbf{S 1 8}$ as a clear oil (989 $\mathrm{mg}, 91 \%$).
$\mathbf{R}_{f}=0.40$ (silica gel, $4: 1$ hexanes/EtOAc);
IR (film) $\nu_{\max } 3414$ (br), 2934, 2861, 1955, 1718, 1150, 1073, 1010, 883, 842, 789, $739 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{dd}, J=1.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=2.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (quin, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.66(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.88(\mathrm{~m}$, $2 \mathrm{H}), 1.86(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.8,157.0,142.2,110.4,106.1,89.9,75.1,67.9,35.2,28.2,25.2$;

2-(hexa-4,5-dien-1-yl)-6-hydroxy-2H-pyran-3(6H)-one (S19):

Reaction of $\mathbf{S 1 8}$ ($983 \mathrm{mg}, 5.52 \mathrm{mmol}$), vanadyl acetylacetonate ($146 \mathrm{mg}, 0.552 \mathrm{mmol}, 0.1$ equiv), and tert-butyl hydroperoxide (1.5 mL of a 5.5 M solution in dodecane, $8.25 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(18 \mathrm{~mL}, 0.3 \mathrm{M})$ according to $\mathbf{S 4}$ above afforded $\mathbf{S 1 9}$ as a yellow oil after column chromatography (silica gel, 9:1 to 7:3 hexanes/EtOAc) as a 17:3 mixture of diastereomers ($858 \mathrm{mg}, 80 \%$).

[^8]$\mathbf{R}_{f}=0.17$ (silica gel, $4: 1$ hexanes/EtOAc);
IR (film) $v_{\text {max }} 3393$ (br), 2932, 2863, 2361, 2341, 1955, 1686, 1092, 1028, $846 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92$ (minor diast., dd, $J=1.5,10.2 \mathrm{~Hz}, 0.15 \mathrm{H}$), 6.89 (major diast., dd, $J=3.7,10.3 \mathrm{~Hz}, 0.85 \mathrm{H}$), 6.14 (minor diast., dd, $J=1.5,10.2 \mathrm{~Hz}, 0.15 \mathrm{H}$), 6.09 (major diast., d, $J=$ $10.3 \mathrm{~Hz}, 0.85 \mathrm{H}$), $5.64(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (quin, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dt}, J=3.3,6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 4.56 (major diast., dd, $J=4.0,8.1 \mathrm{~Hz}, 0.85 \mathrm{H}$), $4.10-4.05$ (minor diast., m, 0.15 H), 3.41 (br. s, 1 H), 2.08-1.92 (m, 3H), 1.80-1.68 (m, 1H), 1.61-1.49 (m, 2H);
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 208.8,196.8,196.4,148.0,144.7,129.0,127.8,91.1,89.8,87.8,79.0$, 75.1, 74.2, 30.3, 29.3, 28.3, 24.9, 24.7;

6-(hexa-4,5-dien-1-yl)-5-oxo-5,6-dihydro-2H-pyran-2-yl 4-(methylthio)benzoate (25):

Reaction of $\mathbf{S 1 9}$ ($823 \mathrm{mg}, 4.24 \mathrm{mmol}$), 4-thiomethylbenzoyl chloride ($1.028 \mathrm{~g}, 5.51 \mathrm{mmol}, 1.3$ equiv), pyridine ($480 \mu \mathrm{~L}, 5.93 \mathrm{mmol}$, 1.4 equiv), and DMAP ($518 \mathrm{mg}, 4.24 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (14 $\mathrm{mL}, 0.3 \mathrm{M}$) according to $\mathbf{1 1}$ above afforded $\mathbf{2 5}$ as a slightly yellow oil after purification by column chromatography (silica gel, $95: 5$ to $5: 1$ hexanes $/ E t O A c$) as a $3: 1$ mixture of diastereomers (665 mg , 46\%).
$\mathbf{R}_{\boldsymbol{f}}=0.34,0.42$ (silica gel, 4:1 hexanes/EtOAc);
IR (film) $v_{\max } 2924,2861,1955,1720,1695,1592,1262,1177,1094,1067,1012,923,840,756$ cm^{-1};
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dt}, J=1.6,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.95(\mathrm{~m} 1 \mathrm{H})$, $6.80-6.78$ (minor diast., $\mathrm{m}, 0.25 \mathrm{H}$), 6.74 (major diast., $\mathrm{d}, ~ J=3.4 \mathrm{~Hz}, 0.75 \mathrm{H}$), $6.29-6.24(\mathrm{~m}, 1 \mathrm{H})$, 5.05 (major diast., quin, $J=6.8 \mathrm{~Hz}, 0.75 \mathrm{H}$), 4.94 (minor diast., quin, $J=6.8 \mathrm{~Hz}, 0.25 \mathrm{H}$), $4.64-4.55$ (m, 2.75H), 4.28 (minor diast., dd, $J=4.9,9.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.83-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.54$ (quin, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 196.0,195.9,165.0,147.1,147.0,142.8,142.0,130.4,130.3,129.0$, $128.4,125.3,125.2,89.7,89.5,88.1,87.7,79.7,76.0,75.1,33.1,29.3,28.2,28.1,25.1,24.4,15.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 367.0975$, found 367.0967.

Scheme S11. Synthesis of substrate 27

3-allyl-1-(furan-2-yl)hex-5-en-1-ol (S20):

Freshly distilled furfural ($704 \mathrm{mg}, 7.33 \mathrm{mmol}, 1.1$ equiv) was dissolved in THF ($24.4 \mathrm{~mL}, 0.3 \mathrm{M}$ in furfural) under an atmosphere of nitrogen and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of (2-allylpent-4-en-1-yl)magnesium bromide ${ }^{16}(13.3 \mathrm{~mL}$ of a 0.5 M solution in THF, 6.66 mmol$)$ was added dropwise and the resulting reaction mixture was stirred for 20 min . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was

[^9]careully added followed by $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layer was washed with brine $(20 \mathrm{~mL})$, and the combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. Purification by column chromatography (silica gel, 95:5 to 9:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$) afforded $\mathbf{S 2 0}$ as a clear oil ($755 \mathrm{mg}, 55 \%$).
$\mathbf{R}_{f}=0.39$ (silica gel, 5:1 hexanes/EtOAc);
IR (film) $v_{\max } 3390$ (br), 3075, 2976, 2919, 1697, 1639, 1505, 1442, 1150, 995, 910, $734 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=2.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.84-5.73(\mathrm{~m}, 2 \mathrm{H}), 5.09-5.02(\mathrm{~m}, 4 \mathrm{H}), 4.82(\mathrm{dt}, J=5.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.90$ - 1.70 (m, 3H);
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,142.2,136.9,136.7,116.8,110.4,106.1,66.0,39.3,38.4,37.8$, 33.9;

2-(2-allylpent-4-en-1-yl)-6-hydroxy-2H-pyran-3(6H)-one (S21):

Reaction of S20 ($745 \mathrm{mg}, 3.61 \mathrm{mmol}$), vanadyl acetylacetonate ($96 \mathrm{mg}, 0.36 \mathrm{mmol}, 0.1$ equiv), and tert-butyl hydroperoxide (1.5 mL of a 5.5 M solution in dodecane, $5.42 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(18.1 \mathrm{~mL}, 0.2 \mathrm{M})$ according to $\mathbf{S 4}$ above afforded $\mathbf{S} 21$ as a yellow oil after column chromatography (silica gel, 9:1 to 7:3 hexanes/EtOAc) as a $7: 3$ mixture of diastereomers ($680 \mathrm{mg}, 85 \%$).
$\mathbf{R}_{f}=0.28$ (silica gel, 5:1 hexanes/EtOAc);
IR (film) $\nu_{\max } 3408$ (br), 3076, 2976, 2919, 1686, 1638, 1087, 1028, 995, $911 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94$ (minor diast., dd, $J=1.5,10.3,0.3 \mathrm{H}$), 6.90 (major diast., dd, $J=$ $3.4,10.3 \mathrm{~Hz}, 0.7 \mathrm{H}$), 6.12 (minor diast., dd, $J=2.0,10.3 \mathrm{~Hz}, 0.3 \mathrm{H}$), 6.11 (major diast., dd, $J=1.0,10.3$ $\mathrm{Hz}, 0.7 \mathrm{H}), 5.84-5.72(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 4 \mathrm{H}), 4.67$ (major diast., dd, J $=3.4,4.8 \mathrm{~Hz}, 0.7 \mathrm{H}$), $4.22-4.18$ (minor diast., m, 0.3 H), 3.72 (minor diast., br. s, 0.3 H), 3.48 (major diast., br. s, 0.7 H$), 2.21-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H})$, 1.65 (ddd, $J=4.2,10.0,14.2,1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.2,196.8,147.9,144.6,136.9,136.8,136.6,136.5,128.9,127.8$, $116.9,116.8,91.0,87.8,72.6,38.6,38.5,37.2,37.1,34.5,33.4,33.3,33.2$;

6-(2-allylpent-4-en-1-yl)-5-oxo-5,6-dihydro-2H-pyran-2-yl 4-(methylthio)benzoate (27):

Reaction of S21 ($600 \mathrm{mg}, 2.70 \mathrm{mmol}$), 4-thiomethylbenzoyl chloride ($756 \mathrm{mg}, 4.05 \mathrm{mmol}, 1.5$ equiv), pyridine ($218 \mu \mathrm{~L}, 2.70 \mathrm{mmol}, 1.0$ equiv), and DMAP ($518 \mathrm{mg}, 4.24 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (14 $\mathrm{mL}, 0.3 \mathrm{M}$) according to $\mathbf{1 1}$ above afforded $\mathbf{2 7}$ as a slightly yellow oil after purification by column chromatography (silica gel, $95: 5$ to $5: 1$ hexanes $/ E t O A c$) as a $3: 1$ mixture of diastereomers (690 mg , 69\%).
$\mathbf{R}_{\boldsymbol{f}}=0.37,0.43$ (silica gel, 4:1 hexanes/EtOAc);
IR (film) $v_{\max } 3074,2975,2920,1721,1697,1593,1261,1175,1094,1066,1013,913,840,756$ cm^{-1};
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.79$ (minor diast., dd, $J=1.2,2.7 \mathrm{~Hz}, 0.25 \mathrm{H}$), 6.73 (major diast., d, $J=3.4 \mathrm{~Hz}, 0.75 \mathrm{H}$), $6.30-6.24(\mathrm{~m}, 1 \mathrm{H})$, $5.79-5.66(\mathrm{~m}, 1.75 \mathrm{H}), 5.59-5.49$ (minor diast., $\mathrm{m}, 0.25 \mathrm{H}$), $5.06-4.85(\mathrm{~m}, 4 \mathrm{H}), 4.69$ (major diast. dd, $J=3.4,9.8 \mathrm{~Hz}, 0.75 \mathrm{H}$), 4.44 (minor diast., dd, $J=3.9,10.3 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.04$ (m,
$2 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{ddd}, J=3.9,10.0,14.4 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 196.2,196.1,165.0,147.1,142.9,141.7,136.8,136.6,136.5,136.2$, $130.5,130.3,129.0,128.6,125.3,125.2,117.1,116.8,88.0,87.8,74.3,38.8,38.4,37.3,37.2,36.5$, 33.2, 33.1, 15.0;

MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 395.1288$, found 395.1290.

Scheme S12. Synthesis of substrate 29

1-(5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)hex-5-en-1-ol (S22):
5-(((tert-Butyldimethylsilyl)oxy)methyl)furan-2-carbaldehyde ${ }^{17}$ ($1.0 \mathrm{~g}, 4.16 \mathrm{mmol}$) was dissolved in THF ($21 \mathrm{~mL}, 0.2 \mathrm{M}$) under an atmosphere of nitrogen and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of pent-4-en-1-ylmagnesium bromide (10.0 mL of a 0.5 M solution in THF, $5.0 \mathrm{mmol}, 1.2$ equiv) was added dropwise and the resulting reaction mixture was stirred for 20 min . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was then careully added followed by $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layer was washed with brine $(20 \mathrm{~mL})$, and the combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. Purification by column chromatography (silica gel, 95:5 to 9:1 hexanes/EtOAc) afforded $\mathbf{S 2 2}$ as a clear oil (1.16 g, 90\%).
$\mathbf{R}_{f}=0.25$ (silica gel, $9: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 3374,2930,2858,1255,1075,834,776 \mathrm{~cm}^{-1}$;
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.18-6.16(\mathrm{~m}, 2 \mathrm{H}), 5.85-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dq}, J=5.0,17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.99-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=5.4,4.8,1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 2.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.84$ $(\mathrm{m}, 3 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.10-0.08(\mathrm{~m}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.6,153.9,138.7,115.0,108.1,106.7,68.0,58.4,35.2,33.7,26.1$, 25.0, 18.6, -5.0;

MS (ESI-TOF) calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 333.1856$, found 333.1866.

6-(((tert-butyldimethylsilyl)oxy)methyl)-6-hydroxy-2-(pent-4-en-1-yl)-2H-pyran-3(6H)-one (S23):

Reaction of $\mathbf{S 2 2}$ ($608 \mathrm{mg}, 1.96 \mathrm{mmol}$), vanadyl acetylacetonate ($52 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.1$ equiv), and tert-butyl hydroperoxide ($534 \mu \mathrm{~L}$ of a 5.5 M solution in dodecane, 2.94 mmol, 1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(9.8 \mathrm{~mL}, 0.2 \mathrm{M})$ according to $\mathbf{S 4}$ above afforded $\mathbf{S 2 3}$ as a yellow oil after column chromatography (silica gel, 95:5 to 9:1 hexanes/EtOAc) ($512 \mathrm{mg}, 80 \%$).
$\mathbf{R}_{f}=0.50$ (silica gel, 5:1 hexanes/EtOAc);
IR (film) $v_{\max } 3466$ (br), 2954, 2930, 2858, 1694, 1254, 1101, 1059, 912, 836, $779 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.73(\mathrm{~m}$,

[^10]$1 \mathrm{H}), 4.99(\mathrm{dq}, J=1.8,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=3.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.64(\mathrm{~m}$, $3 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, 0.11 (d, $J=2.6 \mathrm{~Hz}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.3,145.2,138.7,128.8,114.8,92.8,74.5,68.5,33.7,29.3,26.0$, 24.4, 18.6, -5.0, -5.2;

2-(((tert-butyldimethylsilyl)oxy)methyl)-5-oxo-6-(pent-4-en-1-yl)-5,6-dihydro-2H-pyran-2-yl

 4-(methylthio)benzoate (29):Reaction of S23 ($355 \mathrm{mg}, 1.09 \mathrm{mmol}$), EDC ($417 \mathrm{mg}, 2.18 \mathrm{mmol}, 2.0$ equiv), 4-methylthiobenzoic acid ($366 \mathrm{mg}, 2.18 \mathrm{mmol}, 2.0$ equiv), and DMAP ($266 \mathrm{mg}, 2.18 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.4 mL , 0.2 M) according to $\mathbf{5 c}$ above afforded 29 as a clear oil after column chromatography (Davisil ${ }^{\circledR}, 1: 0$ to 99:1 toluene/EtOAc) as a single diastereomer ($431 \mathrm{mg}, 83 \%$). Decomposition and conversion to 30 was observd to occur upon prolonged exposure of 29 to silica gel; this occurs to a lesser degree with Davisil ${ }^{\circledR}$.
$\mathbf{R}_{f}=0.60$ (silica gel, 5:1 hexanes/EtOAc);
IR (film) $v_{\max } 2928,2857,1716,1594,1272,1109,911,836,778,757,732 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H})$, $6.19(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=2.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dt}, J=1.1,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=3.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}$, $3 \mathrm{H}), 2.09(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.57$ (quin, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.07-0.04(\mathrm{~m}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 196.5,164.8,146.5,144.7,138.6,130.3,127.6,126.1,125.1,115.0$, $100.1,77.6,66.5,33.7,29.7,25.9,24.2,18.4,15.0,-5.2$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SSi}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 499.1945$, found 499.1938 .

4. Procedures for Cycloadditions and Characterization of Products

General Procedure for Thiourea-Catalyzed Cycloadditions (Optimization and

 Structure-Activity Relationship Studies):An oven-dried 0.5 -dram vial was charged with the specified urea, thiourea, or carbazole catalyst(s) (0.10 or 0.15 equiv as indicated). To these catalysts was added a stock solution of substrate 5 (0.05 mmol) and AcOH (0 or 0.15 equiv as indicated) in toluene (0.2 M or 0.4 M in 5 as indicated). No special precautions were taken to exclude air or moisture. The vial was sealed, placed in a $40{ }^{\circ} \mathrm{C}$ bath, and allowed to stir for the designated length of time. The reaction was then removed from heating and quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, which was added to a flask containing 1,3,5-trimethoxybenzene $(0.0119 \mathrm{M}$ in benzene, 0.10 equiv relative to substrate). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. A yield was then determined by ${ }^{1} \mathrm{H}$ NMR of this crude reaction mixture in CDCl_{3}. Enantiomeric excess was determined by chiral HPLC after chromatographic purification on silica gel.

General Procedure A for Thiourea-Catalyzed Cycloadditions (Substrate Scope):

An oven-dried 0.5 -dram vial was charged with para-thiomethylbenzoyl substrate ($\geq 50.0 \mathrm{mg}$). To this vial was then added a stock solution of $\mathrm{AcOH}(0.15 \mathrm{eq})$ in toluene such that the final substrate concentration was 0.4 M . To this solution was added chiral primary aminothiourea catalyst 10 (0.10 , 0.15 , or 0.20 equiv as indicated) and achiral thiourea catalyst $\mathbf{8}(0.10,0.15$, or 0.20 equiv as indicated). No special precautions were taken to exclude air or moisture. The vial was sealed, placed in a $40{ }^{\circ} \mathrm{C}$ oil bath, and allowed to stir for the designated length of time. The reaction was then removed from the bath and transferred with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to a separatory funnel containing $1 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by silica gel flash chromatography. Some products required a second purification by silica gel flash chromatography eluting with a toluene/EtOAc in order to remove unreacted starting material. A byproduct was observed arrising from presumed decompostion of catalyst $\mathbf{8}$ and conjugate addition of 3,5 -bis(trifluoromethyl)aniline to the enone of the product. The yield of this byproduct was $\leq 4 \%$ in all cases. An X-ray crystal structure of this byproduct was obtained from the reaction with substrate 27.

General Procedure for Preparation of Racemic Products:

An oven-dried 2.0-dram vial was charged with substrate ($\geq 0.5 \mathrm{mmol}$) and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05$ M). To this solution was added DBU (1.5 equiv) via syringe. The vial was sealed and allowed to stir overnight at room temperature. The reaction mixture was then concentrated and the racemic product purified by silica gel flash chromatography.

(3aS,7R,8aS)-2,3,8,8a-tetrahydro-1H-3a,7-epoxyazulen-4(7H)-one (6):
According to general procedure A, 5c (102.4 mg, 0.308 mmol$), \mathbf{1 0}(12.4 \mathrm{mg}, 0.031$ mmol, 0.10 equiv), and $\mathbf{8}(15.4 \mathrm{mg}, 0.031 \mathrm{mmol}, 0.10$ equiv) were allowed to react in a toluene solution ($770 \mu \mathrm{~L}, 0.4 \mathrm{M}$) containing $\mathrm{AcOH}(2.7 \mu \mathrm{~L}, 0.046 \mathrm{mmol}, 0.15$ equiv) for 48 h to afford 6 ($37.3 \mathrm{mg}, 74 \%$) as a colorless oil after column chromatography (silica gel, 9:1 to 3:2 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) followed by subsequent column chromatography (silica gel, 98:2 toluene/EtOAc). This material was determined to be 91% ee by chiral HPLC analysis (ChiralPak AS-H, $2 \% \mathrm{iPrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.24$ (silica gel, 95:5 toluene/EtOAc); IR (film) $v_{\text {max }} 2954,2868,1689,1165,1038,789 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{dd}, J=4.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=$ $4.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=8.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.75$ $(\mathrm{m}, 4 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.7$, 152.2, 126.4, 98.3, 76.3, 44.8, 36.9, 32.6, 30.3, 26.3;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$165.0916, found 165.0794;
$[\alpha]_{D}{ }^{23}=-155.4\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right)$.

(3aS,7S,8S,8aS)-8-methyl-2,3,8,8a-tetrahydro-1H-3a,7-epoxyazulen-4(7H)-one (12):

According to general procedure A, $\mathbf{1 1}(100.0 \mathrm{mg}, 0.29 \mathrm{mmol}), \mathbf{1 0}(17.4 \mathrm{mg}, 0.043$ mmol, 0.15 equiv), and $8(21.7 \mathrm{mg}, 0.043 \mathrm{mmol}, 0.15$ equiv) were allowed to react in a toluene solution ($722 \mu \mathrm{~L}, 0.4 \mathrm{M}$) containing $\mathrm{AcOH}(2.5 \mu \mathrm{~L}, 0.043 \mathrm{mmol}, 0.15$ equiv) for 72 h to afford 12 ($35.9 \mathrm{mg}, 70 \%$) as a colorless oil after column chromatography (silica gel, $9: 1$ to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) followed by subsequent column chromatography (silica gel, 98:2 toluene/EtOAc). This material was determined to be 90% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% \mathrm{iPrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.52$ (silica gel, $4: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 2959,2871,1694,1457,1380,1265,1160,1050,929,669 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{dd}, J=4.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=$ $4.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H})$, 1.07 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.7,150.7,128.1,98.3,79.4,52.7,45.8,30.8,30.3,25.7,15.8 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$201.0886, found 201.0887;
$[\alpha]_{D}{ }^{23}=-143.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.

(3aS,7S,8R,8aS)-8-methyl-2,3,8,8a-tetrahydro-1H-3a,7-epoxyazulen-4(7H)-one

 (14):According to general procedure A, $\mathbf{1 3}(100.0 \mathrm{mg}, 0.29 \mathrm{mmol}), \mathbf{1 0}(17.4 \mathrm{mg}, 0.043$ $\mathrm{mmol}, 0.15$ equiv), and $\mathbf{8}(21.7 \mathrm{mg}, 0.043 \mathrm{mmol}, 0.15$ equiv) were allowed to react in a toluene solution ($722 \mu \mathrm{~L}, 0.4 \mathrm{M}$) containing $\mathrm{AcOH}(2.5 \mu \mathrm{~L}, 0.043 \mathrm{mmol}, 0.15$ equiv) for 72 h to afford 14 ($33.8 \mathrm{mg}, 66 \%$) as a colorless oil after column chromatography (silica gel, $9: 1$ to $3: 2$
hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) followed by subsequent column chromatography (silica gel, 98:2 toluene/EtOAc). This material was determined to be 89% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% \mathrm{iPrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.48$ (silica gel, $4: 1$ hexanes/EtOAc);
IR (film) $\boldsymbol{v}_{\max } 2962,2873,1692,1461,1377,1270,1171,1009,912,794,669 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{dd}, J=4.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{td}, J=3.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.65(\mathrm{~m}$, $4 \mathrm{H}), 1.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 198.0,151.7,125.8,99.3,83.0,47.5,38.4,30.1,27.9,26.6,16.7$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$201.0886, found 201.0876;
$[\alpha]_{D}{ }^{24}=-43.0\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$.

(3aS,7S,8aS)-8,8-dimethyl-2,3,8,8a-tetrahydro-1H-3a,7-epoxyazulen-4(7H)-one

(16):

According to general procedure A, $\mathbf{1 5}(100.0 \mathrm{mg}, 0.28 \mathrm{mmol}), \mathbf{1 0}(16.7 \mathrm{mg}, 0.042$ mmol, 0.15 equiv), and $\mathbf{8}(20.8 \mathrm{mg}, 0.042 \mathrm{mmol}, 0.15$ equiv) were allowed to react in a toluene solution ($694 \mu \mathrm{~L}, 0.4 \mathrm{M}$) containing $\mathrm{AcOH}(2.4 \mu \mathrm{~L}, 0.042 \mathrm{mmol}, 0.15$ equiv) for 96 h to afford $16(27.0 \mathrm{mg}, 51 \%)$ as a colorless oil after column chromatography (silica gel, 9:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) followed by subsequent column chromatography (silica gel, 98:2 toluene/EtOAc). This material was determined to be 89% ee by chiral HPLC analysis (ChiralPak AD-H, $5 \% \mathrm{iPrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (silica gel, $4: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 2963,1696,1162,1036,900,795,669 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{dd}, J=4.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{ddd}, J=6.9,1.03,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=2.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 3 \mathrm{H})$, $1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.7,151.4,127.1,99.4,85.4,54.8,45.3,30.1,27.5,26.6,26.5$, 25.2;

MS (ESI-TOF) calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 215.1043$, found 215.1056; $[\alpha]_{D}{ }^{23}=-86.9\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right)$.

(3aS,7S,8S,8aS)-8-phenyl-2,3,8,8a-tetrahydro-1H-3a,7-epoxyazulen-4(7H)-one

 (18):According to general procedure A, $\mathbf{1 7}(100.0 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathbf{1 0}(14.7 \mathrm{mg}, 0.037$ $\mathrm{mmol}, 0.15$ equiv), and $\mathbf{8}(18.4 \mathrm{mg}, 0.037 \mathrm{mmol}, 0.15$ equiv) were allowed to react in a toluene solution $(612 \mu \mathrm{~L}, 0.4 \mathrm{M})$ containing $\mathrm{AcOH}(2.1 \mu \mathrm{~L}, 0.037 \mathrm{mmol}, 0.15$ equiv $)$ for 72 h to afford 18 ($28.4 \mathrm{mg}, 48 \%$) as a colorless oil after column chromatography (silica gel, $9: 1$ to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be 86% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 206 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.50$ (silica gel, 4:1 hexanes/EtOAc);
IR (film) $\boldsymbol{v}_{\max } 2960,1695,1494,1454,1267,1168,1039,794,704 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.08(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.47(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{td}, J=3.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, J=7.3,10.1,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.00(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.1,151.5,140.9,128.8,128.5,127.0,126.2,99.3,82.2,50.5,49.8$, 30.2, 27.9, 27.1;

MS (ESI-TOF) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$241.1229, found 241.1247;
$[\alpha]_{D}{ }^{24}=-79.7\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right)$.

(3aS,7S,8S,8aS)- ethyl

4-oxo-2,3,4,7,8,8a-hexahydro-1 H-3a,7-epoxyazulene-8-carboxylate (20):
According to general procedure A, $19(100.0 \mathrm{mg}, 0.247 \mathrm{mmol}), \mathbf{1 0}(14.9 \mathrm{mg}, 0.037$ mmol, 0.15 equiv), and $\mathbf{8}(18.6 \mathrm{mg}, 0.037 \mathrm{mmol}, 0.15$ equiv) were allowed to react in a toluene solution $(618 \mu \mathrm{~L}, 0.4 \mathrm{M})$ containing $\mathrm{AcOH}(2.1 \mu \mathrm{~L}, 0.037 \mathrm{mmol}, 0.15$ equiv $)$ for 72 h to afford 20 ($38.8 \mathrm{mg}, 66 \%$) as a colorless oil after column chromatography (silica gel, 9:1 to 5:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be 90% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.35$ (silica gel, 5:1 hexanes/EtOAc);
IR (film) $v_{\max } 2961,2872,1732,1694,1374,1192,1166,1048,1034,1019,929 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{dd}, J=4.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=$ $4.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dq}, J=1.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=2.9,6.3,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 196.6,170.9,149.5,127.9,98.5,76.4,61.4,56.0,48.3,31.7,30.3$, 25.8, 14.4;

MS (ESI-APCI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$237.1, found 237.1;
$[\alpha]_{D}{ }^{23}=-272.2\left(\mathrm{c}=1.21, \mathrm{CHCl}_{3}\right)$.

(3aS,7S,8S,8aS)-methyl
8-methyl-4-oxo-2,3,4,7,8,8a-hexahydro-1H-3a,7-epoxyazulene-8-carboxylate (22):

According to general procedure A, $21(63.1 \mathrm{mg}, 0.16 \mathrm{mmol}), 10(12.5 \mathrm{mg}, 0.031$ mmol, 0.20 equiv), and $\mathbf{8}(15.6 \mathrm{mg}, 0.031 \mathrm{mmol}, 0.20$ equiv) were allowed to react in a toluene solution ($390 \mu \mathrm{~L}, 0.4 \mathrm{M}$) containing $\mathrm{AcOH}(1.3 \mu \mathrm{~L}, 0.023 \mathrm{mmol}, 0.15$ equiv) for 96 h to afford 22 $(13.8 \mathrm{mg}, 37 \%)$ as a colorless oil after column chromatography (silica gel, 9:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be 80% ee by chiral HPLC analysis (ChiralCel OC-H, $5 \% \mathrm{iPrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.45$ (silica gel, $4: 1$ hexanes/EtOAc); IR (film) $v_{\max } 2958,1736,1698,1277,1247,1139,1122,1036,914,734,650 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{dd}, J=4.6,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{dd}, J=3.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.69$ (dd, $J=4.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.9,175.2,150.1,127.1,99.3,82.8,56.6,52.5,50.0,30.1,27.7$, 26.7, 21.8;

MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$237.1127, found 237.1151;
$[\alpha]_{D}{ }^{23}=-100.7\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$.

(3aS,7R)-7,8-dihydro-2H-3a,7-epoxyazulen-4(3H)-one (24):

According to general procedure A, $23(107.4 \mathrm{mg}, 0.325 \mathrm{mmol}), \mathbf{1 0}(19.6 \mathrm{mg}, 0.049$ mmol, 0.15 equiv), and $\mathbf{8}(24.4 \mathrm{mg}, 0.049 \mathrm{mmol}, 0.15$ equiv) were allowed to react in a toluene solution ($813 \mu \mathrm{~L}, 0.4 \mathrm{M}$) containing $\mathrm{AcOH}(2.8 \mu \mathrm{~L}, 0.049 \mathrm{mmol}, 0.15$ equiv) for 72 h to afford $24(28.5 \mathrm{mg}, 54 \%)$ as a white solid after column chromatography (silica gel, 9:1 to 5:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) followed by subsequent column chromatography (silica gel, 98:2 toluene/EtOAc). This material was determined to be 95% ee by chiral HPLC analysis (ChiralPak AS-H, $3 \% \mathrm{iPrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.44$ (silica gel, 5:1 hexanes/EtOAc);
IR (film) $\nu_{\max } 2981,2935,2855,1684,1376,1167,1096,1016,987,904,814,790,648 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, J=4.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dq}, J=$ $1.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.66(\mathrm{~m}, 1 \mathrm{H})$, 2.33-2.27 (m, 1H), $1.84(\mathrm{dt}, J=9.0,12.2 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 195.2,153.4,142.5,127.6,126.6,101.0,79.3,38.9,32.5,30.0 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$163.0759, found 163.0628;
$[\alpha]_{D}{ }^{23}=+56.6\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right)$.

(3aS,7S,8aS)-8-methylene-2,3,8,8a-tetrahydro-1H-3a,7-epoxyazulen-4(7H)-one

(26):

According to general procedure A, $25(107.4 \mathrm{mg}, 0.266 \mathrm{mmol}), \mathbf{1 0}(16.0 \mathrm{mg}, 0.040$ $\mathrm{mmol}, 0.15$ equiv), and $\mathbf{8}(20.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.15$ equiv) were allowed to react in a toluene solution ($665 \mu \mathrm{~L}, 0.4 \mathrm{M}$) containing $\mathrm{AcOH}(2.3 \mu \mathrm{~L}, 0.040 \mathrm{mmol}, 0.15$ equiv) for 72 h to afford 26 ($19.7 \mathrm{mg}, 54 \%$) as a clear oil after column chromatography (silica gel, 9:1 to 5:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) followed by subsequent column chromatography (silica gel, 98:2 toluene/EtOAc). This material was determined to be 88% ee by chiral HPLC analysis (ChiralPak AS-H, $10 \% \mathrm{iPrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 222 \mathrm{~nm}$).
$\mathbf{R}_{\boldsymbol{f}}=0.45$ (silica gel, 4:1 hexanes/EtOAc);
IR (film) $\boldsymbol{v}_{\max } 2958,2870,1690,1267,1163,1031,934,897,817,79,782,627 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{dd}, J=4.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.02-4.99(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{ddd}, J=7.6,9.3,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.04(\mathrm{~m}$, $1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.4,150.6,150.5,126.6,107.3,98.9,79.9,48.4,32.2,30.7,26.1 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$199.0735, found 199.0723;
$[\alpha]_{D}{ }^{23}=-526.0\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$.

(2S,3aS,7R,8aS)-2-allyl-2,3,8,8a-tetrahydro-1H-3a,7-epoxyazulen-4(7H)-one (28):

According to general procedure A, $27(111.7 \mathrm{mg}, 0.300 \mathrm{mmol}), 10(12.0 \mathrm{mg}, 0.030$ mmol, 0.10 equiv), and $\mathbf{8}(15.0 \mathrm{mg}, 0.049 \mathrm{mmol}, 0.10$ equiv) were allowed to react in a toluene solution $(750 \mu \mathrm{~L}, 0.4 \mathrm{M})$ containing $\mathrm{AcOH}(2.6 \mu \mathrm{~L}, 0.045 \mathrm{mmol}, 0.15$ equiv) for 72 h to afford $28(47.0 \mathrm{mg}, 77 \%)$ as a clear oil after column chromatography (silica gel, $9: 1$ to $5: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) followed by subsequent column chromatography (silica gel, 98:2 toluene/EtOAc). This material was determined to be 90% ee by chiral HPLC analysis (ChiralPak AS-H, $4 \% \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.37$ (silica gel, 5:1 hexanes/EtOAc);
IR (film) $\boldsymbol{v}_{\max } 3075,2971,2925,1691,1166,1024,909,803 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{dd}, J=4.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddt}, J=$ $6.9,10.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=1.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.94(\mathrm{~m}, 2 \mathrm{H}), 2.75$ (ddd, $J=1.5,7.8$, $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{dd}, J=8.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}$, 1H), $1.31-1.18(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.8,152.6,137.4,125.8,115.8,98.4,77.7,46.1,44.6,40.6,39.5$, 36.4, 35.6;

MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$227.1048, found 227.1069;
$[\alpha]_{D}{ }^{23}=-91.8\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$.

(3aS,7R)-7-(hydroxymethyl)-2,3,8,8a-tetrahydro-1H-3a,7-epoxyazulen-4(7H)-one (S24):

According to general procedure A, $29(124.0 \mathrm{mg}, 0.260 \mathrm{mmol}), 10(15.7 \mathrm{mg}, 0.039$ mmol, 0.15 equiv), and $\mathbf{8}(19.5 \mathrm{mg}, 0.039 \mathrm{mmol}, 0.15$ equiv) were allowed to react in a toluene solution ($650 \mu \mathrm{~L}, 0.4 \mathrm{M}$) containing $\mathrm{AcOH}(2.2 \mu \mathrm{~L}, 0.039 \mathrm{mmol}, 0.15$ equiv) for 72 h to afford 30 after column chromatography (silica gel, 98:2 toluene/EtOAc). The silyl ether was then immediately dissolved in THF (1.0 mL) at room temperature. Water ($400 \mu \mathrm{~L}$), AcOH ($500 \mu \mathrm{~L}$), and conc. $\mathrm{HCl}(100 \mu \mathrm{~L})$ were then subsequently added, and the reaction mixture was stirred for 2 h at room temperature. Sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was then carefully added. The mixture was transferred to a separatory funnel with EtOAc $(20 \mathrm{~mL})$. An additional portion of sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was then added and the layers were separated. The organic layer was washed with brine (15 mL) and the combined aqueous layers were further extracted with $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by column chromatography (silica gel, 2:1 hexanes/EtOAc) afforded $\mathbf{S 2 4}$ as a clear oil ($35.7 \mathrm{mg}, 70 \%$ overall). This material was determined to be 89% ee by chiral HPLC analysis (ChiralPak AD-H, 10% PrOH in hexanes, 1 $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.35$ (silica gel, $1: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 3442,2952,2869,2360,1688,1382,1270,1169,1085,1066,813 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=5.4$, $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=5.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=$ $8.8,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,152.4,127.6,98.5,86.0,65.6,46.1,38.2,32.7,30.4,26.4$; MS (ESI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$217.0841, found 217.0790; $[\alpha]_{D}{ }^{23}=-55.2\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right)$.

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Cycloaddition Products

6. Chiral HPLC Traces of Scalemic Cycloaddition Products

Product 6:

Racemic Sample: HPLC (ChiralPak AS-H, 2\% $i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AS-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Product 12:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Product 14:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AS-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Product 16:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Product 18:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 206 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AS-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 206 \mathrm{~nm}$)

Product 20:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Product 22:

Racemic Sample: HPLC (ChiralCel OC-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralCel OC-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Product 24:

Racemic Sample: HPLC (ChiralPak AS-H, 3\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AS-H, 3\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Product 26:

Racemic Sample: HPLC (ChiralPak AS-H, $10 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 222 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AS-H, $10 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 222 \mathrm{~nm}$)

Product 28:

Racemic Sample: HPLC (ChiralPak AS-H, 4\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AS-H, 4\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$)

Free alcohol of 30 (S24):

Racemic Sample: HPLC (ChiralPak AD-H, $10 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Scalemic Sample: HPLC (ChiralPak AD-H, $10 \% i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

7. Computational Procedures and Results

Calculations were performed at Harvard University using Gaussian 09^{18} at the B3LYP ${ }^{19}$ level of density functional theory with the $6-31 \mathrm{G}(\mathrm{d})^{20}$ basis set. Transition structures were fully optimized and verified to be first-order saddle points by frequency calculations showing the existence of a single imaginary frequency. Relative energies between diastereomeric transition structures are for uncorrected electronic energy differences. Figures were generated using CYLview. ${ }^{21}$

TS leading to the observed major enantiomer of product with $\mathbf{1 0}^{\bullet}$ pyrylium:

TS leading to the observed minor enantiomer of product with $\mathbf{1 0}^{\bullet}$ pyrylium:

Figure S1. Two lowest-energy diastereomeric transition structures for $\mathbf{1 0 \bullet}$ pyrylium.

[^11]TS leading to the observed minor enantiomer of product with 32•pyrylium:

TS leading to the observed major enantiomer of product with 32•pyrylium:

Figure S2. Two lowest-energy diastereomeric transition structures for $\mathbf{3 2} \cdot$ pyrylium.

While the origin of selectivity for each catalyst is not yet fully understood some speculation is possible based on the structures shown in Figures S1 and S2. The two lowest energy transition structures of $\mathbf{1 0 \cdot}$ pyrylium both contain an interaction between the $\mathrm{N}-\mathrm{H}$ of the pyrylium and the sulfur of the thiourea $(\mathrm{H}-\mathrm{S}$ distance $=2.34 \AA$ and $2.39 \AA$ for the structures leading to the major and minor enantiomers, respectively). This may serve to rigidify the structure and control the orientation of the aminopyrylium with respect to the cyclohexyl unit. The tethered alkene may then approach the pyrylium on the more exposed outer face as in the structure leading to the major enantiomer or on the inner face as in the structure leading to the minor enantiomer. It is possible that the ortho-phenyl substituent on the S-phenyl of the thiourea serves to block this inner face of the pyrylium and thus raises the energy of cycloaddition on this face due to destabilizing steric interactions.

In each of the two lowest energy transition structures for $32 \cdot$ pyrylium the carbazole and the pyrylium are both essentially perpendicular to the cyclohexane plane. In contrast to the case with $\mathbf{1 0} \cdot$ pyrylium, approach of the alkene to the more exposed outer face now leads to the observed minor enantiomer of product, and it is a structure wherein cycloaddition occurs onto the inner face which is lower in energy and leads to the observed major enantiomer of product. This inner face is in closer proximity to the carbazole and it is possible that this heterocycle engages in a stabilizing cation- π interaction with alkene dipolarophile as it becomes more positively charged in the transition state. Such an interaction is absent from the transition structure leading to the minor enantiomer of product.

Transition structure leading to the observed major enantiomer of product with $\mathbf{1 0 \bullet} \cdot$ pyrylium:

E(RB+HF-LYP): - 1994.03711612
Zero-point correction $=0.661700$ (Hartree/Particle)
Thermal correction to Energy $=0.696396$
Thermal correction to Enthalpy $=0.697340$
Thermal correction to Gibbs Free Energy= 0.591999

Cartesian coordinates:

C	2.42811600	3.51378200	-0.12486000
C	1.61112100	2.32480800	-0.67184800
C	0.10634300	2.53168400	-0.37176500
C	-0.37782100	3.86957800	-0.95937400
C	0.45222100	5.05848000	-0.45474100
C	1.94855300	4.84665500	-0.71740600
H	1.72586600	2.27421400	-1.76445700
H	2.32110000	3.53012100	0.96829800
H	3.49421600	3.36268700	-0.33367400
H	-0.31813200	3.82350700	-2.05813900
H	-1.43480700	4.00014200	-0.70229300
H	0.10538000	5.97929700	-0.93617000
H	0.28409600	5.18632600	0.62327000
H	2.13860700	4.85732000	-1.80038200
H	2.53217700	5.67012400	-0.29140800
H	-0.02583000	2.54383400	0.71522200
N	-0.72363200	1.44013700	-0.87942100
C	-1.27302400	0.43976300	-0.12818900
N	-2.29805700	-0.20979800	-0.74459900
C	-3.04072900	-1.30163900	-0.17605300
C	-4.30264500	-1.02756900	0.38418800
C	-2.50463600	-2.60410400	-0.18642100
C	-5.01415700	-2.07459500	0.98192600

C	-3.24697500	-3.62181800	0.43174100
C	-4.48395000	-3.36208000	1.01529100
H	-5.98928000	-1.86965200	1.41351600
H	-2.85506800	-4.63433500	0.42180900
H	-5.04471100	-4.16890700	1.47805000
H	-1.08714800	1.56566700	-1.81812400
H	-2.78717100	0.31552900	-1.46152900
N	2.05236700	1.04438200	-0.09750800
C	3.18365600	0.39689200	-0.41378300
C	4.07124100	0.84130600	-1.44526200
C	3.58053100	-0.77799000	0.31115600
H	3.79901800	1.67907700	-2.07481200
C	5.62621900	-0.85485000	-0.74495000
H	6.45469900	-1.51334500	-0.97892400
C	5.29883200	0.24969400	-1.57239800
H	6.04486300	0.63428200	-2.26057500
O	4.59253400	-1.52633000	-0.18467700
S	-0.70899400	0.03920000	1.41773500
H	1.38646100	0.60810400	0.55581600
C	-4.88329300	0.34858400	0.35151900
C	-5.32321600	0.91079700	-0.85811500
C	-5.02352200	1.09248700	1.53148000
C	-5.88368100	2.18875700	-0.88824200
H	-5.26448800	0.32502300	-1.77399700
C	-5.58454300	2.37043800	1.50102700
H	-4.68365600	0.66725600	2.47145900
C	-6.01337900	2.92259400	0.29265300
H	-6.23411400	2.60319100	-1.82973000
H	-5.68881500	2.93384100	2.42421800
H	-6.45575900	3.91462300	0.27239200
C	-1.20521900	-2.94809000	-0.82800600
C	-0.92200600	-2.58791500	-2.15571700
C	-0.25974900	-3.71820000	-0.13127800
C	0.26868100	-2.98154100	-2.76547000
H	-1.65475100	-2.02304100	-2.72391700
C	0.93098700	-4.11481200	-0.74160700
H	-0.46272000	-4.00286100	0.89728700
C	1.20127800	-3.74589000	-2.06069000
H	0.45822500	-2.70951200	-3.80061000
H	1.64167000	-4.72403900	-0.18883600
H	2.12163400	-4.06612400	-2.54163100

C	2.76982300	-1.48332700	1.35245100
H	1.69732500	-1.45312200	1.13387900
H	3.08021000	-2.53242800	1.34727500
C	3.06985000	-0.85029900	2.73690400
H	2.51979200	0.09371400	2.83440700
H	2.71317300	-1.50762000	3.53612400
C	4.57794800	-0.58861600	2.84486800
H	4.80390800	-0.12012900	3.81371700
H	5.13346200	-1.53463800	2.81785300
C	5.06441300	0.32414900	1.74445700
C	6.25837300	0.13551900	1.04783100
H	6.76713300	0.98903800	0.61138200
H	6.91002300	-0.68514000	1.34156200
H	4.60844100	1.31257900	1.71813400

Transition structure leading to the observed minor enantiomer of product with $\mathbf{1 0 \bullet}$ pyrylium:

E(RB+HF-LYP): -1994.03502204
Zero-point correction $=0.662040$ (Hartree/Particle)
Thermal correction to Energy= 0.696602
Thermal correction to Enthalpy $=0.697546$
Thermal correction to Gibbs Free Energy= 0.593406

Cartesian coordinates:

C	-1.93555900	4.09210000	-0.18219800
C	-1.52336800	2.71653900	0.38743400
C	0.01822800	2.60495400	0.39617700
C	0.63849000	3.75597200	1.20948200
C	0.19799000	5.13256000	0.69232800
C	-1.33044200	5.24355300	0.63288100
H	-1.87624800	2.62385200	1.42510100
H	-1.59025100	4.14722400	-1.22346400
H	-3.02741000	4.17809100	-0.21589500
H	0.34331500	3.65093900	2.26554600
H	1.72967700	3.65989600	1.16849200
H	0.61550000	5.91683200	1.33326800
H	0.61585700	5.29229700	-0.31083200
H	-1.74208600	5.22930300	1.65262300
H	-1.62727700	6.20134900	0.19170300
H	0.36609700	2.67146500	-0.64005600
N	0.49988700	1.32165100	0.91925800
C	1.07280700	0.34949400	0.14080100
N	1.92120700	-0.47570200	0.81035100
C	2.80424400	-1.42121100	0.17267200
C	4.01720100	-0.94084700	-0.36144400
C	2.44483200	-2.77927800	0.08589900
C	4.85517600	-1.83858500	-1.03346700
C	3.31804900	-3.64494200	-0.59327200
C	4.50336100	-3.18086100	-1.15451500
H	5.79308800	-1.47740500	-1.44443500
H	3.06755900	-4.69949700	-0.65377500
H	5.16548500	-3.87142600	-1.66866700
H	0.80848000	1.36021700	1.88566300
H	2.21756000	-0.15760700	1.72638700
N	-2.09853400	1.61006000	-0.39386400
C	-3.38413500	1.22890500	-0.35815300
C	-4.34107200	1.83320600	0.51825000
C	-3.86225800	0.15106900	-1.18178000
H	-4.05852100	2.67256100	1.13998700
C	-5.94918500	0.19717600	-0.20217100
H	-6.98250400	-0.09511200	-0.34811000
C	-5.58815600	1.27989200	0.63501300
H	-6.29386800	1.62787000	1.38252900
O	-5.20604100	0.00416300	-1.31299300

S	0.71423700	0.17337600	-1.50373500
H	-1.43143700	1.10491600	-0.99136300
C	4.42019000	0.49035000	-0.23103800
C	4.65242200	1.06467400	1.02944500
C	4.60869300	1.28123400	-1.37382000
C	5.04990000	2.39713000	1.14600200
H	4.56561200	0.45021400	1.92381000
C	5.00578400	2.61433900	-1.25845200
H	4.42684400	0.84963000	-2.35369900
C	5.22367800	3.17754500	0.00010300
H	5.24567400	2.81875400	2.12841100
H	5.14706300	3.21235700	-2.15449200
H	5.54149800	4.21272700	0.08797400
C	1.20095600	-3.34188700	0.68058700
C	0.84192100	-3.09878900	2.01672100
C	0.39966200	-4.21562100	-0.07312100
C	-0.27831100	-3.70799900	2.58097400
H	1.46835500	-2.46117600	2.63311000
C	-0.71703500	-4.83293300	0.49245900
H	0.65833200	-4.41222600	-1.10967100
C	-1.06171000	-4.58053200	1.82216400
H	-0.52401000	-3.52245700	3.62325500
H	-1.30837100	-5.52348000	-0.10348700
H	-1.92120400	-5.07294000	2.26883700
C	-3.09602400	-0.53722200	-2.27075800
H	-3.80661400	-0.74586600	-3.07699800
H	-2.30750500	0.10234400	-2.68100000
C	-2.49636500	-1.86681100	-1.73383800
H	-1.54405600	-1.65955000	-1.23439200
H	-2.27444700	-2.54022500	-2.56781400
C	-3.47863700	-2.49747100	-0.74229700
H	-3.02413900	-3.39844400	-0.30785900
H	-4.40051600	-2.81358400	-1.24716900
C	-3.81304200	-1.54547200	0.38052500
C	-5.08929800	-1.43993400	0.93220600
H	-5.21414500	-1.06927700	1.94452400
H	-5.86540600	-2.12328300	0.59366700
H	-2.96728000	-1.18046400	0.96098200

Transition structure leading to the observed major enantiomer of product with $\mathbf{3 2}$ •pyrylium:

E(RB+HF-LYP): $\quad-1270.12693678$
Zero-point correction $=0.535358$ (Hartree/Particle)
Thermal correction to Energy $=0.560440$
Thermal correction to Enthalpy $=0.561384$
Thermal correction to Gibbs Free Energy= 0.481163

Cartesian coordinates:

C	2.25419200	-3.15363000	0.07750200
C	1.58970400	-1.78859600	-0.18746700
C	2.13488500	-0.70631800	0.78838500
C	3.67759900	-0.64611200	0.78361600
C	4.29766500	-2.02307400	1.05647700
C	3.78696300	-3.06735300	0.05599000
H	1.80622800	-1.49001500	-1.21490700
H	1.92985300	-3.51725200	1.06527900
H	1.89093400	-3.87758100	-0.66087100
H	4.03918300	-0.26741900	-0.17858200
H	3.98998800	0.08248500	1.53949100
H	5.38950800	-1.95057900	1.00844800
H	4.05210700	-2.34456900	2.07885500
H	4.12563900	-2.80723600	-0.95683300
H	4.20700200	-4.05408400	0.27915800
H	1.83369200	-1.02206900	1.79283300
N	0.13117800	-1.94094000	-0.05994300
C	-0.84640900	-1.55972800	-0.91000000
C	-0.60370000	-0.83917900	-2.11925000
C	-2.21081200	-1.85957900	-0.60219200
H	0.40376100	-0.58702900	-2.42244600
C	-2.99010400	-0.66167700	-2.40291800
H	-3.83950100	-0.54322400	-3.06575600

H	-0.16012000	-2.48210400	0.74441700
C	-1.67127600	-0.34944900	-2.82257000
H	-1.52822600	0.31690600	-3.66690700
O	-3.13578400	-1.72858600	-1.58364800
N	1.50885900	0.59398100	0.57667000
C	0.65779900	1.21814900	1.49548800
C	1.59800100	1.40462600	-0.56148700
C	0.18805800	2.43729300	0.94117000
C	0.78374800	2.55394800	-0.37226800
C	2.31550000	1.22639100	-1.75376200
C	0.69074700	3.52089000	-1.38041100
C	1.39846900	3.34013400	-2.56493200
H	1.34168300	4.08742300	-3.35039400
C	2.20297300	2.20309000	-2.74361800
H	2.76399400	2.08379000	-3.66616100
C	-0.68854900	3.24591100	1.67578900
C	0.26147700	0.80693000	2.77445000
C	-1.08906000	2.83564100	2.94392000
H	-1.76104900	3.45758300	3.52723900
C	-0.61386500	1.62858400	3.48470300
H	-0.92050700	1.33298600	4.48402700
H	0.63308300	-0.10621700	3.22965500
H	-1.04497700	4.18594600	1.26338100
H	0.07882300	4.40709200	-1.23480100
H	2.96802800	0.37511700	-1.91417400
C	-2.69172600	-2.67687200	0.55852600
H	-3.62281200	-3.16199700	0.24989300
H	-1.98985100	-3.47852700	0.82130300
C	-2.96322000	-1.74238600	1.76886600
H	-3.56347600	-2.26437500	2.52099200
H	-2.01648800	-1.46307000	2.24835700
C	-3.65880100	-0.47207700	1.26168600
H	-4.64183700	-0.71367100	0.83808000
H	-3.83516800	0.20798200	2.10715200
C	-2.81137500	0.25251400	0.24493800
H	-1.83314400	0.57641600	0.59170100
C	-3.31762800	0.83471800	-0.91716100
H	-2.78388500	1.66538900	-1.36784100
H	0.83257000	-1.07931100	

Transition structure leading to the observed minor enantiomer of product with $\mathbf{3 2} \cdot$ pyrylium:

E(RB+HF-LYP): - 1270.12481009
Zero-point correction $=0.534791$ (Hartree/Particle)
Thermal correction to Energy $=0.560053$
Thermal correction to Enthalpy $=0.560998$
Thermal correction to Gibbs Free Energy= 0.478788

Cartesian coordinates:

C	0.24084100	3.53137800	0.03668700
C	-0.18428800	2.06924200	-0.19149500
C	-1.50872200	1.74821700	0.56271500
C	-2.62580000	2.75828600	0.22743000
C	-2.16415400	4.20206900	0.47210800
C	-0.88415800	4.51712000	-0.31283600
H	-0.32785100	1.90507500	-1.26201700
H	0.51436100	3.65879500	1.09567400
H	1.14303900	3.74090200	-0.54976800
H	-2.94163900	2.64951200	-0.81510000
H	-3.49895800	2.51557500	0.84247400
H	-2.96332500	4.89608500	0.19037900
H	-1.98273200	4.35631300	1.54544600
H	-1.09066100	4.46965600	-1.39146200
H	-0.54686000	5.53869500	-0.10660200
H	-1.28937100	1.87343400	1.62878000
N	0.88949900	1.17124000	0.26112100
C	1.38929200	0.07240000	-0.33960500
C	0.99164200	-0.37245400	-1.63709700
C	2.42319100	-0.67630700	0.30965900
H	0.13741400	0.06479200	-2.13745600
C	2.81324900	-1.94860300	-1.56139700

H	3.25038000	-2.88039000	-1.90134000
H	1.19294200	1.33767600	1.21289700
C	1.74204900	-1.33335200	-2.26002300
H	1.55276000	-1.61412400	-3.29107200
O	2.78304000	-1.87046400	-0.21038400
N	-1.90239800	0.35551400	0.40216800
C	-1.81368600	-0.60798400	1.41632700
C	-2.32637200	-0.27974200	-0.77241800
C	-2.18994800	-1.87000500	0.89192900
C	-2.51499500	-1.66219500	-0.50258800
C	-2.53983500	0.23324300	-2.06051500
C	-2.93328800	-2.52334800	-1.52333200
C	-3.14918700	-2.01328100	-2.80006400
H	-3.48036900	-2.67087100	-3.59792000
C	-2.95125700	-0.64823000	-3.06127300
H	-3.13300900	-0.26188300	-4.06022600
C	-2.18397000	-2.99867000	1.72010100
C	-1.43291900	-0.46580900	2.75589300
C	-1.80280400	-2.86132800	3.05118200
H	-1.79928100	-3.72755800	3.70559000
C	-1.43330000	-1.60526300	3.56009300
H	-1.15309600	-1.51339200	4.60565000
H	-1.17063400	0.49721700	3.18468600
H	-2.47829800	-3.96873800	1.32903100
H	-3.08972500	-3.57905500	-1.31907600
H	-2.41523300	1.28536200	-2.29189900
C	2.89122700	-0.47547700	1.71926000
H	3.26752600	-1.43908800	2.07541200
H	2.06909800	-0.19099300	2.38792800
C	4.03779600	0.57155300	1.72955200
H	4.58377200	0.52706100	2.67709100
H	3.62277700	1.58482500	1.64953400
C	4.95546100	0.30099900	0.52873600
H	5.76230300	1.04726000	0.50520700
H	5.43811600	-0.67885400	0.63182600
C	4.19726000	0.36596700	-0.77720500
H	3.71461000	1.31792700	-0.99375200
C	4.38957200	-0.52453100	-1.83428400
H	5.16636200	-1.28158300	-1.74586200
H	4.17417600	-0.20657100	-2.84925000

8. Frontier Molecular Orbital Analysis and Intermolecular Reaction Results

Frontier molecular orbital energies were calculated according to the DFT-based method of Musgrave ${ }^{22}$ wherein the excitation energy of the first singlet excited state is used as an approximation of the HOMO-LUMO energy gap; the authors also provide linear correction factors to improve the accuracy of computed values. Structures were first fully optimized at the B3LYP/6-311+G(d,p) level of density functional theory and verified to be local minima by the existence of no imaginary frequencies. HOMO energy values were then linearly corrected. A time-dependent DFT (TD-DFT) calculation was then performed on each optimized structure in order to determine the excitation energy of the first singlet excited state, and this value was then linearly corrected and added to the corrected HOMO energy to give a LUMO energy value. This was done for 3-oxidopyrylium, 3-amidopyrylium, 3-aminopyrylium, and the following dipolarophiles: acrylonitrile, methyl acrylate, ethyl vinyl ether, norbornene, styrene, and 4-methoxystyrene (Figure S3).

Figure S3. FMO analysis of pyryliums and dipolarophiles.
3-Oxidopyryliums are known to react with both electron-rich and electron-deficient alkenes (Scheme S13). ${ }^{23}$ In line with these observations is our FMO analysis showing that either the HOMO or the LUMO of the 3-oxidopyrylium is predicted to interact with either the LUMO or the HOMO of the dipolarophile, respectively, depending on its electronic nature.
Scheme S13. Reported intermolecular 3-oxidopyrylium [5+2] cycloaddition reactions. ${ }^{23}$

In an attempt to extend the developed thiourea-catalyzed [5+2] cycloaddition to an intermolecular variant a variety of dipolarophiles were tested under catalytic conditions with pyranone S25 (Scheme S14). In no cases was a reaction found to occur with electron-deficient alkenes (acrylonitrile or methyl acrylate). On the other hand ethyl vinyl ether, norbornene, styrene, and para-methoxystyrene all provided product under these non-basic conditions, albeit with low reactivity. If the catalytic reaction under investigation were proceeding via an oxidopyrylium intermediate, similar trends to reported triethylamine-promoted reactions (Scheme S13) would be expected. This is not the case allowing us to infer that an oxidopyrylium is not the species undergoing cycloaddition.
Scheme S14. Intermolecular results under thiourea-catalyzed conditions.

Computed FMO energy values of a hypothetical amidopyrylium predict this species to have similar reactivity to an oxidopyrylium: either the HOMO or the LUMO of an amidopyrylium can be more relevant to cycloaddition with different dipolarophiles. In addition, the higher HOMO energy value of the amidopyrylium predicts it to be more reactive with electron-deficient dipolarophiles. Again, since the reactivity trends in Scheme S14 are not similar to those in Scheme S13 we conclude that an amidopyrylium is not the species undergoing cycloaddition.

The computed FMO energy values of an aminopyrylium are such that with all examined dipolarophiles it should be the LUMO of this species that is most relevant to cycloaddition. This is consistent with the results in Scheme S14 where only dipolarophiles with high-lying HOMOs react. These results in conjunction with the structure-activity relationship studies have led us to propose that it is an aminopyrylium that is the active species undergoing cycloaddition in the present catalytic reaction. The oxygen-analogue of this species, a protonated oxidopyrylium or 3-hydroxypyrylium, has similar calculated HOMO and LUMO values (-16.7 eV and -12.9 eV , respectively), but this species was eliminated from the list of possible intermediates undergoing cycloaddition because of its expected high acidity (estimated to be similar to that of a protonated carbonyl) and because tertiary aminothiourea 33 is not an active catalyst.

In order to examine the effect of a counteranion an FMO analysis of ion-pair S26 was also performed (Figure S4). Here a TD-DFT calculation was not possible owing to the fact that the Kohn-Sham orbitals taken into consideration in such a calculation with $\mathbf{S 2 6}$ are not those relevant to cycloaddition. This was determined through visualization of the HOMO and LUMO surfaces. Visualization of other MO surfaces allowed for the identification of a "HOMO" and "LUMO" that would be involved in cycloaddition of $\mathbf{S 2 6}$ through analogy to visualized HOMO and LUMO surfaces of the other pyryliums. The identified "HOMO" was linearly corrected as before. Musgrave also provides linear corrections for LUMO values from DFT calculations and shows these to give
comparable yet slightly less accurate results than with TD-DFT calculations. This was used to determine an energy value for the "LUMO" of S26. Although both the "HOMO" and the "LUMO" of S26 are higher in energy than the HOMO and LUMO of the free aminopyrylium, their values are such that the predicted interaction should still be the same with examined dipolarophiles. This is thus still consistent with an aminopyrylium undergoing cycloaddition. Since an overall cationic species such as an aminopyrylium would be expected to have lower-lying frontier MO's as compared to a similar neutral species, it is not surprising that the introduction of a counteranion to give an ion pair should then raise the energy values of these orbitals. That the charge separation in $\mathbf{S 2 6}$ is greater than in an oxido- or amidopyrylium may be the reason for $\mathbf{S 2 6}$ still having lower FMO energy values than the zwitterions.

Figure S4. FMO analysis of ion-pair S26.

9. Additional Optimization Studies

Results with different benzoyl leaving groups:

Enantioselectivity in different solvents:

Solvent	ee (\%)
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	46
TBME	20
hexanes	30
$\mathrm{Et}_{2} \mathrm{O}$	22
THF	-
$\mathrm{H}_{2} \mathrm{O}$	6
$\mathrm{CH}_{3} \mathrm{CN}$	18
MeOH	-
PhMe	54
-	28

Catalyst loading studies:

The above table shows that while the loading of achiral thiourea 8 may be decreased without a compromise in results with the parent substrate (Entries 1-6) any reduction in the loading of catalyst 10 results in lower reactivity (compare Entries 1, 7, and 8).

10. Results with Different Aryl Primary Aminothiourea Catalysts

11. Results with Sub-Optimal and Unreactive Substrates

Sub-optimal substrates:

Unreactive substrates:

12. X-Ray Crystallographic Information

Catalyst 10:

Crystal data	
Chemical formula	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{~S}$
M_{r}	401.56
Crystal system, space group	Trigona, $P 3_{1}$
Temperature (K)	100
a, b, c (Å)	11.4229 (4), 11.4229 (4), 14.1312 (5)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 120
$V\left(\AA^{3}\right)$	1596.84 (10)
Z	3
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.46
Crystal size (mm)	$0.26 \times 0.14 \times 0.12$
Data collection	
Diffractometer	CCD area detector diffractometer
Absorption correction	Multi-scan SADABS
$T_{\text {min }}, T_{\text {max }}$	0.703, 0.845
No. of measured, independent and observed $[/>2 \sigma(I)]$	32886, 3653, 3637

reflections	
$R_{\text {int }}$	0.048
Refinement	$0.090, \quad 0.178, \quad 1.02$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	3653
No. of reflections	249
No. of parameters	6
No. of restraints	H-atom parameters constrained
H-atom treatment	$0.41,-0.33$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure	$-10(10)$
Flack parameter	

p-Bromobenzoate of reduced product $\mathbf{6}$:

Z	2
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	2.75
Crystal size (mm)	$0.24 \times 0.18 \times 0.16$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	Multi-scan SADABS
$T_{\text {min }}, T_{\text {max }}$	0.559, 0.668
No. of measured, independent and observed $[/>2 \sigma(/)]$ reflections	20486, 3847, 3623
$R_{\text {int }}$	0.030
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.020, 0.046, 1.08
No. of reflections	3847
No. of parameters	190
No. of restraints	1
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.31, -0.28
Absolute structure	Flack H D (1983), Acta Cryst. A39, 876-881
Flack parameter	-0.004 (5)

Product 24:

Crystal data	
Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$
M_{r}	162.18
Crystal system, space group	Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Temperature (K)	100
a, b, c (Å)	7.2085 (1), 7.8988 (1), 13.8528 (2)
$V\left(\AA^{3}\right)$	788.76 (2)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.77
Crystal size (mm)	$0.28 \times 0.16 \times 0.12$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	Multi-scan SADABS
$T_{\text {min }}, T_{\text {max }}$	0.814, 0.914
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	13604, 1387, 1378
$R_{\text {int }}$	0.031
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.029, 0.073, 1.15

No. of reflections	1387
No. of parameters	109
No. of restraints	0
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }} \Delta \rho_{\text {min }}\left(\mathrm{e}^{-3}\right)$	$0.12,-0.21$
Absolute structure	Flack H D (1983), Acta Cryst. A39, 876-881
Flack parameter	$0.1(2)$

Derivative of 28 (byproduct in the reaction with substrate 27 - see general procedure A for details):

Crystal data	
Chemical formula	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{NO}_{2}$
M_{r}	433.39
Crystal system, space group	Monoclinic, $C 2$
Temperature (K)	100
$a, b, c(\AA ̊)$	$29.9461(7), 5.0733(1), 15.3388(4)$
$\beta\left({ }^{\circ}\right)$	$90.381(2)$
$V\left(\AA^{3}\right)$	$2330.30(9)$
Z	4
Radiation type	$C u K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.97
$C r y s t a l$	

Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	Multi-scan SADABS
$T_{\text {min }}, T_{\text {max }}$	0.814, 0.926
No. of measured, independent and observed $[/>2 \sigma(/)]$ reflections	3818, 3818, 3728
$R_{\text {int }}$	0.0000
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.035, 0.094, 1.09
No. of reflections	3818
No. of parameters	288
No. of restraints	26
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.20, -0.19
Absolute structure	Flack H D (1983), Acta Cryst. A39, 876-881
Flack parameter	0.11 (13)

[^0]: ${ }^{1}$ 2,6-diphenylaniline synthesized according to: Miura, Y.; Oka, H.; Momoki, M.; Synthesis 1995, 1419-1422.

[^1]: ${ }^{4}$ 6-Hydroxy-2-(pent-4-en-1-yl)-2H-pyran-3(6H)-one synthesized according to: Sammes, P. G.; Street, L. J.; Kirby, P. J. Chem. Soc. Perkin Trans. 1 1983, 2729-2734.

[^2]: 5 (E)-4-Hexen-1-ol was purchased from Sigma-Aldrich as a "predominantly trans" mixture. A small amount (approx. 4\%) of inseparable (Z)-4-Hexen-1-ol impurity was carried through the synthesis of substrate 11 and subsequent cycloaddition to 12.
 ${ }^{6}$ Oppolzer, W.; Siles, S.; Snowden, R. L.; Bakker, B. H.; Petrzilka, M. Tetrahedron 1985, 41, 3497-3509.

[^3]: ${ }^{7}$ (Z)-5-phenylpent-4-en-1-ol synthesized according to: Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328-6335.

[^4]: ${ }^{8}$ Feltenberger, J. B.; Hayashi, R.; Tang, Y.; Babiash, E. S. C; Hsung, R. P. Org. Lett. 2009, 11, 3666-3669.

[^5]: ${ }^{9}$ 1-(furan-2-yl)hex-5-en-1-ol was synthesized according to: Sammes, P. G.; Street, L. J.; Kirby, P. J. Chem. Soc. Perkin Trans. 1 1983, 2729-2734.

[^6]: ${ }^{10}$ Silica gel-supported sodium periodate prepared and used according to: Zhong, Y.-L.; Shing, T. K. M. J. Org. Chem. 1997, 62, 2622-2624.
 ${ }^{11}$ Methyl 2-(triphenylphosphoranylidene)propanoate synthesized according to: Eey, S. T.-C.; Lear, M. J. Org. Lett. 2010, 12, 5510-5513.

[^7]: 12 4,5-Hexadien-1-al synthesized according to: Tsukamoto, H.; Matsumoto, T.; Kondo, Y. J. Am. Chem. Soc. 2008, 130, 388-389.

[^8]: ${ }^{13}$ 2-(2-(hexa-4,5-dien-1-yl)-1,3-dithian-2-yl)furan synthesized according to: De, S. K. Tetrahedron Lett., 2004, 45, 2339-2341.
 ${ }^{14}$ 6-Bromohexa-1,2-diene synthesized occording to: Molander, G. A.; Cormier, E. P. J. Org. Chem. 2005, 70, 2622-2626.
 ${ }^{15}$ Stork, G.; Zhao, K. Tetrahedron Lett., 1989, 30, 287-290.

[^9]: ${ }^{16}$ (2-Allylpent-4-en-1-yl)magnesium bromide synthesized according to: Krech, F.; Issleib, K. Z. Anorg. Allg. Chem. 1988, 557, 143-152.

[^10]: ${ }^{17}$ 5-(((tert-Butyldimethylsilyl)oxy)methyl)furan-2-carbaldehyde prepared according to: Celanire, S.; Marlin, F.; Baldwin, J. E.; Adlington, R. M. Tetrahedron 2005, 61, 3025-3032.

[^11]: ${ }^{18}$ Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
 ${ }^{19}$ B3LYP = Becke-3-Lee-Yang-Parr density functional theor: (a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
 ${ }^{20}$ (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. (b) Hehre, W. J.;
 Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta. 1973, 28, 213-223.
 ${ }^{21}$ CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009; http://www.cylview.org.

