
Fluorinating Hexagonal Boron Nitride into Diamond-like Nanofilms with Tunable Band Gap and Ferromagnetism

Zhuhua Zhang, Xiao Cheng Zeng and Wanlin Guo

Outline:

- 1) Energetics comparison,
- 2) Molecular dynamics simulation.
- 3) Band structures of HF-BN nanofilms.

1) Energetics comparison

Figure S1. (a) Front views of atomic structures for the sp^3 bonded F-BN_m nanofilms with different termination atoms. (b) Formation energies of h-BN_m, F-BN_m, F-BN_m-BN and F-BN_m-BB nanofilms as a function of *m*. In the formed nanofilm, the N-N bond length is 1.48 Å in average, shorter than 1.59 Å of other B-N bonds.

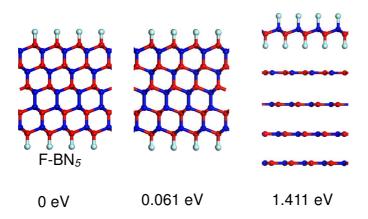


Figure S2. Front views of atomic structures for two possible polymorphs of the F-BN₅ nanofilms and their relative energies per unit cell with respect to the F-BN₅ nanofilms.

2) Molecular dynamics simulation

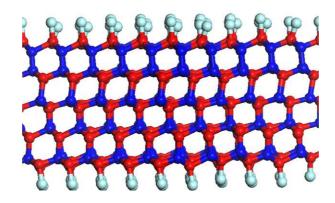
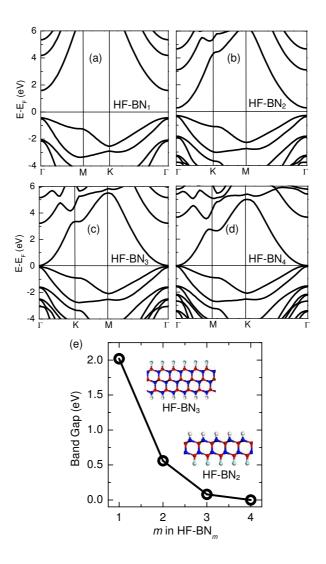



Figure S3. Snapshots of the F-BN $_5$ nanofilm at the end of 5ps quantum molecular dynamics simulations.

3) Band structures of HF-BN nanofilms.

Figure S4. (a-d) Band structures of the HF-BN_{*m*} nanofilms. (e) Band gap as a function of *m* in the HF-BN_{*m*} nanofilm. Insets show the atomic structures of the HF-BN₃ and HF-BN₂ nanofilms.

A merit of these single-crystalline HF-BN nanofilms is their desirable electronic properties. For example, the HF-BN₃ nanofilm possesses a direct LDA gap of 0.08 eV and an effective electron mass of 0.95 m_0 (m_0 is the mass of free electron), close to that of silicon. Moreover, the LDA gap of the HF-BN nanofilms is reduced quickly with increasing film thickness and their structures are robust to carrier doping.