Short-Term Memory to Long-Term Memory Transition in

a Nanoscale Memristor

Supporting Information

Authors

Ting Chang, Sung-Hyun Jo, and Wei Lu*

Department of Electrical Engineering and Computer Science, University of Michigan, MI, 48109, USA

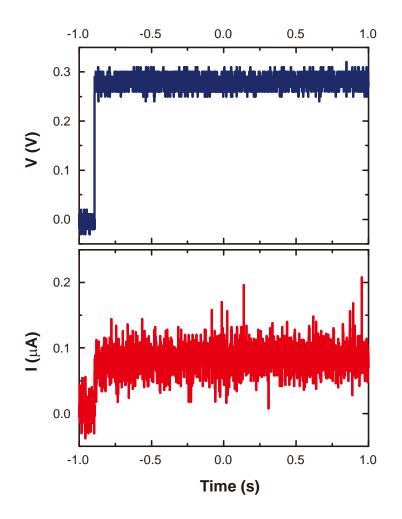
*Corresponding author. Electronic mail: <u>wluee@eecs.umich.edu</u>

The Weibull Distribution

The two-parameter probability density function (*pdf*) of a Weibull distribution is¹

$$f(x,\lambda,k) = \begin{cases} \frac{k}{x} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} & x \ge 0, \\ 0 & x < 0, \end{cases}$$
(S1)

, where k>0 is the shape parameter and $\lambda>0$ is the scale parameter. The corresponding cumulative density function (*cdf*) is


$$F(x;k,\lambda) = 1 - e^{-(x/\lambda)^k}$$
(S2)

for $x \ge 0$, or else $F(x; k, \lambda) = 0$.


From eq S1 and S2, the survival function (*i.e.* the complementary *cdf* of Weibull) is

$$S(x) = e^{-(x/\lambda)^k}$$
(S3)

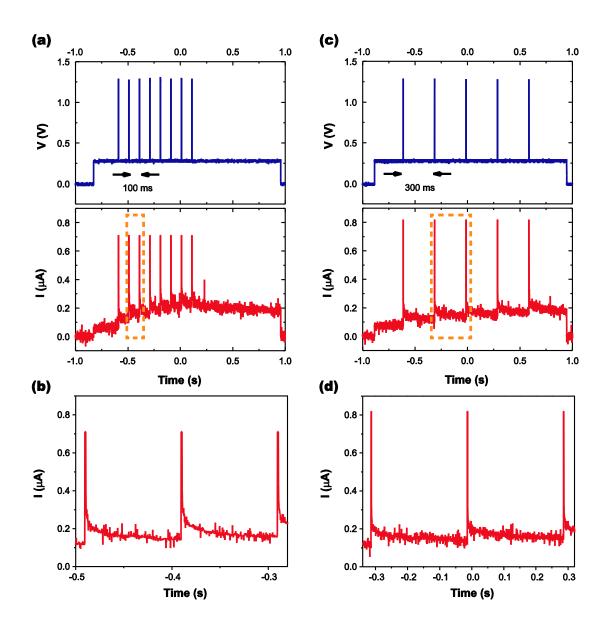

, which has the form of a stretched-exponential function.

Figure S1. Effects of the read voltage on the memristor. The top panel shows the application of a constant read voltage of 0.3 V used in the studies and the bottom panel shows the corresponding current. The current stays at a stable level within the measured timeframe, proving that a small read voltage of 0.3V has negligible effect on the memristor device.

Figure S2. Effects of the pulse duration and pulse amplitude on STM-LTM transition. The stimulation pulse interval was fixed at 60 ms. $I_{10} - I_1$ was measured against stimulation rates for (a) different pulse durations and (b) different pulse amplitudes. Longer pulse duration and larger pulse amplitude both lead to larger I_{10} - I_1 , and hence are more effective in the memory transitions.

Figure S3. Effects of the pulse interval on STM-LTM transition. Same methods used as in Figure 2b, except the interval was changed to (a) 100 ms and (c) 300 ms. (b) and (d) are zoomed-in views of the rectangular areas in (a) and (c), respectively. Stimulations with shorter pulse interval (*i.e.* higher stimulation rate) are clearly more effectively in causing the memory transitions, in agreement with the observation in Figure 4.

References

1. Schroder, D. K. Semiconductor Material and Device Characterization, 3rd ed.; IEEE Press:

New Jersey, 2006.