# Supporting Information 

For

# Direct Entry to Erythronolides via a Cyclic Bis[Allene] 

<br>${ }^{a}$ Department of Chemistry, Rutgers, The State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854 and ${ }^{\text {b }} \mathrm{C}$. Eugene Bennett Department of Chemistry, West Virginia University, 406 Clark Hall, Prospect Street, Morgantown, WV 26506, USA

## Table of Contents

| General Procedure | S 1 |
| :--- | :--- |
| Procedures and characterization data for $\mathbf{1 - 2 2}$ | $\mathrm{S} 2-\mathrm{S} 16$ |
| Detailed ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and selected NOE and HMBC data for $\mathbf{1 2 - 2 2}$ | $\mathrm{S} 17-\mathrm{S} 37$ |
| NMR spectra for $\mathbf{1 - 2 2}$ | $\mathrm{S} 38-\mathrm{S} 114$ |
| Crystal structure of compound $\mathbf{1 8}$ | $\mathrm{S} 115-\mathrm{S} 117$ |
| Full citation for reference $\mathbf{6 i - 6 k}$ | S 118 |

General Procedure: Starting materials, reagents and solvents were purchased from commercial suppliers (Aldrich, Strem, TCI America and Ochem.) and used without further purification unless otherwise stated. All reactions were conducted in oven-dried $\left(135{ }^{\circ} \mathrm{C}\right)$ glassware under an inert atmosphere of argon. The progress of reactions was monitored by silica gel thin layer chromatography (TLC) plates (mesh size 250 um with F-254 indicator, Dynamic Adsorbent), visualized under UV and charred using anisaldehyde or ceric ammonium molybdate (CAM) stain. Products were purified by flash column chromatography (FCC) on 120-400 mesh silica gel (Fisher). Infrared (FTIR) spectra were recorded on an ATI Mattson Genesis Series FTInfrared spectrophotometer. Proton nuclear magnetic resonance spectra ( ${ }^{1} \mathrm{H} N \mathrm{NR}$ ) were recorded on either a Varian-600 instrument $(600 \mathrm{MHz})$ or a Varian- 500 instrument $(500 \mathrm{MHz})$. Chemical shifts are reported in ppm relative to residual $\mathrm{CHCl}_{3}$ signal. Data is reported as follows: chemical shift, multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=\mathrm{broad}, \mathrm{m}=$ multiplet), coupling constant $(\mathrm{Hz})$, and integration. Carbon nuclear magnetic resonance spectra ( ${ }^{13} \mathrm{C}$ NMR) were recorded on either a Varian-600 instrument ( 150 MHz ) or a Varian-500 instrument ( 125 MHz ). Mass spectra were recorded on a Finnigan LCQ-DUO mass spectrometer. Optical rotations were recorded at rt using the sodium D line ( 589 nm ), on a Perkin Elmer 343 Polarimeter.


To a solution of 4(S)-benzyl N -propionyl oxazolidinone $\mathbf{1}(16.0 \mathrm{~g}, 68.6 \mathrm{mmol})$ in dichloromethane (DCM) ( 343 mL ) was added dibutylboron triflate $(75.0 \mathrm{~mL}, 75.0 \mathrm{mmol})$ and triethylamine (TEA) ( $9.72 \mathrm{~g}, 96.0 \mathrm{mmol}$ ) sequentially at $-78^{\circ} \mathrm{C}$. The reaction mixture was then warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h then cooled back to $-78{ }^{\circ} \mathrm{C}$. A DCM solution ( 1.0 M ) of 1,1 -dimethoxy acetaldehyde ( $100 \mathrm{~mL}, 100 \mathrm{mmol}$ ) was added to the reaction mixture slowly at $-78{ }^{\circ} \mathrm{C}$. The mixture was slowly warmed to $0{ }^{\circ} \mathrm{C}$ over 1 h and then stirred for 1 h . The reaction was then quenched with 100 mL solution of methanol and $\mathrm{pH}=7.4$ phosphate buffer (1:3 ratio) at $0{ }^{\circ} \mathrm{C}$, followed by addition of 100 mL solution of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ and methanol ( $1: 2$ ratio). The mixture was then stirred for 10 min at $0^{\circ} \mathrm{C}$ then diluted with 200 mL DCM. The organic layer was separated, washed with water ( $2 \times 100 \mathrm{~mL}$ ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated under reduced pressure to give the crude product, which was purified by FCC using $40 \%$ ethyl acetate in hexane to afford aldol product 2 as white crystalline ( $20.9 \mathrm{~g}, 90 \%$ yield). $[\alpha]^{25}{ }_{\mathrm{D}}=+50.0$ ( $c=0.01, \mathrm{CHCl}_{3}$ ); M.P. $67{ }^{\circ} \mathrm{C}$; IR $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3485,2937,1778,1696,1386 ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}),, 7.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.72-4.65(\mathrm{~m} .1 \mathrm{H}), 4.33(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.23-4.15 (m, 2H), 4.05-3.96 (m, 1H), $3.42(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, J=13.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=13.5,10 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.60(\mathrm{bs}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 176.1,153.2,135.4,129.6$ (2), 129.1 (2), 127.5, 104.9, 71.4, 66.3, 55.4, 54.9, 54.4, 39.2, 38.1, 12.8; MS (ESI+) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{6}+\mathrm{Na}\right]^{+}$: 360.2 , found: 360.2



3

Powdered $4 \AA$ molecular sieves $(20.0 \mathrm{~g})$ and $\mathrm{Ag}_{2} \mathrm{O}(35.0 \mathrm{~g}, 151 \mathrm{mmol})$ were combined under inert atmosphere (glove bag) and then taken up in anhydrous DCM ( 150 mL ) followed by addition of 2 $(17.0 \mathrm{~g}, 50.4 \mathrm{mmol})$ in anhydrous DCM $(100 \mathrm{~mL})$. After stirring for 10 min at room temperature
(rt) $\mathrm{BnBr}(18.5 \mathrm{~g}, 108 \mathrm{mmol})$ was added to this heterogeneous mixture. The system was then wrapped in aluminum foil and stirred for 2 days under inert atmosphere in the dark at rt . The mixture was then filtered over celite and the solid residue was rinsed with DCM ( $3 \times 100 \mathrm{~mL}$ ). The organic filtrate was concentrated under reduced pressure to give crude product, which was purified by FCC using $20 \%$ ethyl acetate in hexane to afford 3 as a colorless oil ( $20.4 \mathrm{~g}, 95 \%$ yield). $[\alpha]^{25}{ }_{\mathrm{D}}=+21.0\left(c=0.01, \mathrm{CHCl}_{3}\right)$; IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2934,1778,1698,1383,1107 ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.03(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{dd}, J=7.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (s, 3H), 3.34 (s, 3H), 3.24 (dd, $J=13.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.75 (dd, $J=13.5,9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 175.2,153.3,138.6,135.5,129.6$ (2), 129.0 (2), 128.4 (2), 128.2 (2), $127.8,127.4,107.0,79.8,74.4,66.1,55.5,55.4,55.2,39.5$, 38.1, 13.8; MS (ESI+) calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{6}+\mathrm{Na}\right]^{+}: 450.2$, found: 450.2;.


To a solution of $\mathbf{3}(17.8 \mathrm{~g}, 41.6 \mathrm{mmol})$ in diethyl ether ( 200 mL ) was added methanol $(5 \mathrm{~mL})$. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and then $\mathrm{LiBH}_{4}[33.2 \mathrm{~mL}$ of 2.5 M solution in tetrahydrofuran (THF) 83.0 mmol ] was added slowly under argon. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h then quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with ethyl acetate ( $3 \times 200 \mathrm{~mL}$ ). The organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated under reduced pressure to give crude product, which was purified by FCC using $15 \%$ ethyl acetate in hexane to afford 4 as colorless oil ( $10.1 \mathrm{~g}, 95 \%$ yield $)$. $[\alpha]^{25}{ }_{\mathrm{D}}=-33.0\left(c=0.01, \mathrm{CHCl}_{3}\right)$; IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3431,2934,1454,1071 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.32(\mathrm{~m}, 4 \mathrm{H})$, $7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{dd}, J=6.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H})$, 1.90 (bs, 1H), $0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 138.9,128.5$ (2), 128.2 (2), $127.8,106.5,79.6,74.1,65.8,56.2,54.6,36.9,11.4 ; \mathrm{MS}(\mathrm{ESI}+)$ calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$: 277.2, found: 277.2.


To a solution of $\mathbf{4}(7.30 \mathrm{~g}, 28.7 \mathrm{mmol})$ in DCM $(150 \mathrm{~mL})$ was added DABCO ( $3.22 \mathrm{~g}, 28.7 \mathrm{mmol}$ ). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and then tosyl chloride ( $5.47 \mathrm{~g}, 28.7 \mathrm{mmol}$ ) was added. The resulting solution was warmed to rt, stirred for 1 h , then diluted with 150 mL of DCM, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give crude tosylate, which was taken on without further purification as described below.

The above tosylate was dissolved in anhydrous DMSO ( 70 mL ), and then lithium acetylide-ethylenediamine ( $4.76 \mathrm{~g}, 52.9 \mathrm{mmol}$ ) solution in DMSO ( 30 mL ) was added. The resulting mixture was stirred for 3 h at rt , then cooled to $10^{\circ} \mathrm{C}$ then carefully quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ such that the temperature of the solution was maintained below $20^{\circ} \mathrm{C}$. The quenched solution was then diluted with ethyl acetate ( 300 ml ) and washed with water ( 3 x 100 mL ). The organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated under reduced pressure to give crude product, which was purified by FCC using 3\% ethyl acetate in hexane to afford 5 as colorless oil $(5.95 \mathrm{~g}, 82 \%$ yield $) .[\alpha]^{25}=-39.0(c=0.01$, $\mathrm{CHCl}_{3}$ ); IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3295,2935,2116,1096 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}$, 4H), 7.28-7.22 (m, 1H), 4.68 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.5 \mathrm{H}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65(\mathrm{dd}, \mathrm{J}=7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.00(\mathrm{~m}$, $2 \mathrm{H}), 1.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.3$, 128.4 (2), 127.9 (2), 127.6, 106.4, 83.7, 80.3, 74.8, 69.6, 56.0, 53.8, 34.4, 23.5, 14.0; MS (ESI+) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$: 285.1 , found: 285.2.


Compound S-2 and ent-3 were prepared following the same procedure used for the synthesis of their antipods 2 and 3 respectively. The observed optical rotation ( $[\alpha]^{25}{ }_{\mathrm{D}}$ ) for the compound S-2 and ent-3 are $-50.0\left(c=0.01, \mathrm{CHCl}_{3}\right)$, and $-21.0\left(c=0.01, \mathrm{CHCl}_{3}\right)$ respectively.


Ent-3 ( $1.00 \mathrm{~g}, 2.34 \mathrm{mmol}$ ) was dissolved in 10 mL water: acetic acid:trifluoroacetic acid $=1: 4: 1$ mixed solution at rt for 3 h and 30 mins . The acidic solvent was azatropically removed with toluene ( $5 \times 20 \mathrm{~mL}$ ) under reduced pressure and the resulting crude product was taken on without further purification as described below. It could also be further purified by FCC using $15 \%$ ethyl acetate in hexane to afford 6 as colorless viscous oil ( $847 \mathrm{mg}, 95 \%$ yield). $[\alpha]^{25}{ }_{D}=-30.0(c=0.01$, $\mathrm{CHCl}_{3}$ ); IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1778,1730,1693,1390,1212 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81$ (s, $1 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.54(\mathrm{~m}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ $(\mathrm{dd}, J=13.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=13.5,10 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 202.0,173.8,153.1,137.2,135.1,129.6$ (2), 129.1 (2), 128.7 (2), 128.4, 128.3 (2), 127.5, 83.3, 73.1, 66.4, 55.4, 41.5, 37.8, 13.4; MS (ESI+) calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5}+\mathrm{Na}\right]^{+}: 404.2$, found: 404.2.


A solution of alkyne $5(2.04 \mathrm{~g}, 7.76 \mathrm{mmol})$ in diethyl ether $(40 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and then $n-\mathrm{BuLi}(3.10 \mathrm{~mL}, 7.76 \mathrm{mmol})$ was added slowly. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then a solution of $\mathrm{ZnBr}_{2}(1.75 \mathrm{~g}, 7.76 \mathrm{mmol})$ in diethyl ether ( 20 mL ) was added. The resulting milky white solution was stirred for 10 mins at $-78^{\circ} \mathrm{C}$ then warmed to $0^{\circ} \mathrm{C}$ and then a solution of above aldehyde $6(0.804 \mathrm{~g}, 2.1 \mathrm{mmol})$ in diethyl ether $(15 \mathrm{~mL})$ was added drop wise using a syringe pump for 2 h . The solution was then stirred for another 4 h then quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, diluted with ethyl acetate ( 200 ml ) and washed with water $(2 \times 50$ mL ). The organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated under reduced pressure to give the crude product ( $8: 1$ ratio by ${ }^{1} \mathrm{H}$ NMR), which was purified by FCC using $10 \%$ ethyl acetate in hexane to afford major isomer of 7 as colorless oil ( $570 \mathrm{mg}, 58 \%$ yield). $[\alpha]^{25}{ }_{\mathrm{D}}=+18.0\left(c=0.01, \mathrm{CHCl}_{3}\right.$ ); IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2935,2238,1786,1454$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.24(\mathrm{~m}, 10 \mathrm{H}), 5.12(\mathrm{td}, J=2.0 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}$,
$3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 176.0$, 139.1, 137.1, 128.8 (2), 128.5 (2), 128.4, 128.1 (2), 127.9 (2), 127.7, 106.4, $90.5,81.0,80.5,74.7,73.9,72.4,70.5,56.1,54.1$, 39.4, 34.4, 24.0, 14.0, 12.7; MS (ESI+) calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 489.3$, found: 489.2.


Alkyne 7 ( $280 \mathrm{mg}, 0.600 \mathrm{mmol}$ ) was dissolved in 20 mL mixed solution of acetic acid, TFA and water (4:1:1) at rt and stirred for 14 h . The acidic solvent was removed with toluene ( $5 \times 100 \mathrm{~mL}$ ) under reduced pressure to afford the crude product, which was taken on without further purification as described below. It could also be further purified by FCC using $12 \%$ ethyl acetate in hexane to afford 8 as colorless viscous oil ( $227 \mathrm{mg}, 90 \%$ yield). $[\alpha]^{25}=+22.0\left(c=0.01, \mathrm{CHCl}_{3}\right)$; IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2935,2240,1786,1730,1455 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H})$, $7.4-7.25(\mathrm{~m}, 10 \mathrm{H}), 5.11(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=13 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 1 \mathrm{H})$, $1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 204.3,175.9$, 137.6, 137.1, 128.8 (2), 128.7 (2), 128.5, 128.3, 128.2 (2), 128.0 (2), 89.2, 85.1, 81.0, 74.9, 73.4, $72.4,70.4,39.4,35.2,23.1,14.5,12.7$; MS (ESI + ) calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}: 443.2$, found: 443.2.


A solution of $9(594 \mathrm{mg}, 3.00 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and then a solution of MeLi in diethyl ether ( $1.4 \mathrm{~mL}, 2.25 \mathrm{mmol}$ ) was added slowly. (The preparation of compound $\mathbf{9}$ can be found in the supporting information of: Ghosh, P.; Lotesta, S. D.; Williams, L. J. J. Am. Chem. Soc. 2007, 129, 2438.) The reaction mixture was stirred for 1 h and then a 1 M hexane solution of chlorotriisopropoxytitanium (IV) ( $3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}$ ) was added. The solution was slowly warmed to $-40^{\circ} \mathrm{C}$ and then a solution of aldehyde $8(315 \mathrm{~g}, 0.749 \mathrm{mmol})$ in THF ( 10 mL ) was added slowly at $-40^{\circ} \mathrm{C}$. The mixture was warmed slowly to $-20^{\circ} \mathrm{C}$ over 2 h , diluted with ethyl
acetate ( 200 ml ) and washed with water ( 50 mL ). The organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated under reduced pressure to give the crude product ( $6: 1$ ratio by ${ }^{1} \mathrm{H}$ NMR) which was purified by FCC using $10 \%$ ethyl acetate in hexane to afford major isomer of $\mathbf{1 0}$ as colorless oil ( $411 \mathrm{mg}, 89 \%$ combined yield for both diastereomers). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16-7.44(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{td}, J=2.1 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.43-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=5.4,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 175.9$, $138.5,137.1,128.8,128.6,128.5,128.1,127.9,127.90,89.8,88.583 .5,82.7,81.0,77.5,77.2$, $77.0,74.6,74.4,72.4,70.5,64.4,63.5,39.4,34.7,31.9,26.0,23.8,18.5,15.0,12.7,9.9,0.2,-4.3$, -4.8; MS (ESI+) calculated for $\left[\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na}\right]^{+}$: 641.3, found: 641.3.


To a solution of $\mathbf{1 0}(1.53 \mathrm{~g}, 2.47 \mathrm{mmol})$ in 50 mL anhydrous diethyl ether was added $\mathrm{Et}_{3} \mathrm{~N}(377 \mathrm{mg}$, 3.71 mmol ) and $\mathrm{MsCl}(424 \mathrm{mg}, 3.71 \mathrm{mmol})$ respectively at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for 1 h at rt . The solution was then cooled to $-20^{\circ} \mathrm{C}$ and then a solution of methyl cyanocuprate was added, prepared from $\mathrm{CuCN}(1.32 \mathrm{~g}, 14.8 \mathrm{mmol})$ and $\mathrm{MeLi}(9.2 \mathrm{~mL}$, 14.7 mmol ) in $75 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was then warmed to rt and stirred for 2 $h$, quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, extracted in diethyl ether ( $3 \times 100 \mathrm{~mL}$ ) and washed with water ( 100 mL ). The organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated under reduced pressure to give crude product which was then taken on without further purification as described below.


The above acid S-3 ( $1.39 \mathrm{~g}, 2.20 \mathrm{mmol}$ ) was dissolved in $80 \%$ acetic acid $(50 \mathrm{~mL})$ and stirred for 8 h at rt . The solvent $80 \%$ acetic acid was removed with toluene ( $3 \times 50 \mathrm{~mL}$ ) under reduced pressure
and the resulting crude product was purified by FCC using $50 \%$ ethyl acetate in hexane to afford 11 as colorless oil ( $1.14 \mathrm{~g}, 88 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=+45.0\left(c=0.01, \mathrm{CHCl}_{3}\right)$; IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} \quad 3388$, 2933, 1965, 1710, 1454; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.36-7.27(\mathrm{~m}, 10 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H})$, 5.08-5.02 (m, 1H), $4.70(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $8.5,5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.67(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ (t, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 203.6,201.7,175.7,138.9,137.7,128.7$ (2), 128.5 (2), 128.1, 128.1 (2), 127.8 (2), 127.7, 103.4, 100.6, $92.5,88.0,82.1,79.3,74.2,70.7,70.4$, $44.4,37.6,37.0,27.9,19.4,15.4,15.1,13.3,9.8$; MS (ESI + ) calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}: 541.3$, found: 541.3.


Seco acid 11 ( $280 \mathrm{mg}, 0.540 \mathrm{mmol}$ ) was taken up in 20 mL toluene, then triethylamine ( 273 mg , 2.7 mmol ) and 2,4,6-trichlorobenzoyl chloride ( $658 \mathrm{mg}, 2.7 \mathrm{mmol}$ ) were added at rt . The reaction mixture was then stirred for 6 h at rt . The resulting solution was delivered dropwise by syringe pump over 2 h into a solution of DMAP ( $659 \mathrm{mg}, 5.40 \mathrm{mmol}$ ) in toluene $(150 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$. The mixture was then cooled to rt and quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The organic layer was separated, washed with water ( $2 \times 100 \mathrm{~mL}$ ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated under reduced pressure to give the crude product which upon FCC purification using $5 \%$ ethyl acetate in hexanes to afford macrolactone 12 ( $172 \mathrm{mg}, 64 \%$ yield) as a colorless oil. IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2970,1961,1731,1454,1248 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.22(\mathrm{~m}, 10 \mathrm{H})$, $5.33(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{dt}, J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dq}, J=8.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.7$, 201.4,
174.1, 139.3, 138.8, 128.5, 128.4, 128.0, 127.9, 127.7, 127.5, 102.6, 99.2, 92.0, 90.8, 81.8, 77.0, $75.7,70.7,68.9,45.2,37.9,36.1,25.2,20.4,15.5,14.3,9.9$ MS (ESI+) calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 523.3$, found: 523.3.


The macrolactone $12(26 \mathrm{mg}, 0.052 \mathrm{mmol})$ was dissolved in $2 \mathrm{~mL} 1: 1 \mathrm{mixture}$ of $t-\mathrm{BuOH}$ and water. To this solution was added $\mathrm{OsO}_{4}(0.50 \mathrm{ml}, 4 \% \mathrm{wt}$. water solution, 0.078 mmol$)$ at rt , stirred for 45 min then quenched by 20 mL saturated sodium sulfite solution, extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated under reduced pressure to give the crude product, which was purified by FCC using $10 \%$ ethyl acetate in hexane to afford the macrolactone 13 as a light yellowish oil $(23 \mathrm{mg}, 0.043 \mathrm{mmol}, 83 \%$ yield): IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3475,2930,2872,1966,1739,1496,1455,1370 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.26-7.38(\mathrm{~m}, 10 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}$ $=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=6.8$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=6.9,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=3.8,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 1.9(\mathrm{dd}$, $J=6.6,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{dd}, J=3.2,15.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 212.1,204.0,173.8,138.6,138.4,128.6,128.5,128.1,127.9,127.7$, 126.1, 99.8, 96.7, 82.3, 78.9, 76.5, 76.0, 73.8, 70.0, 45.6, 43.0, 42.6, 34.2, 27.4, 25.3, 18.6, 15.5, 13.7, 9.6; MS (ESI+) calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$: 557.3, found: 557.3. $[\alpha]^{25}=-32.6^{\circ}(\mathrm{c}=$ $0.004, \mathrm{CHCl}_{3}$ )


The hydroxyl ketone $13(8.0 \mathrm{mg}, 0.015 \mathrm{mmol})$ was dissolved in 1 mL anhydrous diethyl ether, cooled to $0^{\circ} \mathrm{C}$, then a 0.1 M solution of zinc borohydride ( $1 \mathrm{~mL}, 0.1 \mathrm{mmol}$ ) was added, stirred for 30 min then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated under reduced pressure to give a crude product which was purified by FCC using $20 \%$ ethyl acetate in hexane to afford 14 as a colorless oil ( $5.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 68 \%$ yield) as product: IR $v_{\text {max }}(\mathrm{neat}) / \mathrm{cm}^{-1} 3454,2968,2933$, 2875, 1729, 1455, 1371, 1182, 1067, ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37-7.27(\mathrm{~m}, 10 \mathrm{H}), 5.38(\mathrm{~m}$, $1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.1,1 \mathrm{H}), 4.59(\mathrm{~d}, \mathrm{~J}=11.1,1 \mathrm{H}), 4.42(\mathrm{~d}$, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=7.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{dq}$, $J=7.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=14.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=15.0,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83(\mathrm{dd}, \mathrm{J}=15.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.16(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{dd}, J=14.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 204.2,174.8,138.3,138.0,128.7,128.6,128.2,128.1(2), 127.8,99.5$, $91.7,80.6,79.7,76.3,74.6,73.7,73.1,70.6,44.0,39.8,34.1,33.5,27.1,25.2,19.9,14.6,14.2$, 9.7; MS (ESI + ) calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 559.30$, found: 559.30; $[\alpha]^{25}{ }_{\mathrm{D}}=-3.1^{\circ}(\mathrm{c}=0.003$, $\mathrm{CHCl}_{3}$ ).


The macrolactone $13(6.0 \mathrm{mg}, 0.011 \mathrm{mmol})$ was dissolved in 1 mL DCM then 2,6-lutidine and TESOTf was added respectively at rt , stirred for 20 min at rt , and then quenched by addition of excess aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was diluted with 10 mL DCM, separated, and then concentrated under reduced pressure to give the crude product which was purified with FCC ( $3 \%$ ethyl acetate in hexane) to afford the product 15 as a colorless oil $(6.0 \mathrm{mg}, 0.0093 \mathrm{mmol}, 83 \%$ yield): IR $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 2957, 2934, 2875, 1726, 1455, 1370, 1167, 1072; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.14(\mathrm{~m}, 10 \mathrm{H}), 5.16(\mathrm{dd}, J=6.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{q}, J=$ $11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, J=19.7,10.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.05 (ddd, $J=8.3,6.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=16.9,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.88-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{dt}, J=10.2,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73$

- $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{dt}, J=6.4,5.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.72-0.60(\mathrm{~m}, 6 \mathrm{H}), 0.57-0.47(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 212.9$, 204.1, 174.1, 139.2, 138.6, 128.4, 128.4, 128.3, 128.0, $127.8,127.5,98.9,92.4,83.2,82.4,77.4,76.4,72.9,70.3,45.3,42.7,41.6,34.3,26.9,25.1,18.1$, 15.7, 13.1, 9.3, 7.5, 7.1; MS (ESI+) calculated for $\left[\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na}\right]^{+}: 671.3$, found: 671.3. $[\alpha]^{25}{ }_{\mathrm{D}}=$ $-33.7^{\circ}\left(\mathrm{c}=0.004, \mathrm{CHCl}_{3}\right)$


The protected ketoalcohol $15(12.8 \mathrm{mg}, 0.0200 \mathrm{mmol})$ was dissolved in $1 \mathrm{~mL} t$-BuOH followed by the addition of citric acid $(8.0 \mathrm{mg}, 0.040 \mathrm{mmol})$ and the osmium tetroxide solution $(0.13 \mathrm{~mL}, 4 \%$ wt . in water). The resulting dark purple solution was then stirred at rt for 3 h then the reaction was stopped by adding 10 mL saturated solution of sodium sulfite and extracted with 20 mL ethyl acetate. The organic layer was separated and then concentrated under reduced pressure to give a crude product which was purified by FCC using $10 \%$ ethyl acetate in hexane to afford product 16 as a colorless oil: $(3.7 \mathrm{mg}, 0.0064 \mathrm{mmol}, 32 \%$ yield, 4.5 mg starting material recovered, $49 \%$ BORSM) IR $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3479,2921,2876,2850,1731,1698,1623,1455,1367 ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}) ; 6.64(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.2,15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.89(\mathrm{dd}, J=2.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H})$, $3.60(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=4.3,18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=3.4,18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ $(\mathrm{dd}, J=10.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{dd}, J=2.1,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}$, $3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.9,9 \mathrm{H}), 0.88(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 212.5,202.7,178.5,154.9,138.5$, 128.6, 128.3, 128.0, 122.7, 84.4, 82.4, 80.8, 77.1, 73.0 46.3, 43.0, 37.6, 33.3, 28.3, 23.6, 23.0, 22.5, 16.0, 10.9, 7.5, 7.0; MS (ESI+) calculated for $\left[\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na}\right]^{+}: 597.3$, found: 597.3


The macrolactone $12(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ was dissolved in a $1: 1$ mixture solution of $t-\mathrm{BuOH}$ and water ( 1 mL ), then $0.28 \mathrm{~mL} \mathrm{OsO}_{4}$ solution ( $4 \% \mathrm{wt}$. in water) was added at rt , stirred for 4 h then quenched with 15 mL saturated sodium sulfite solution, and then extracted with diethyl ether ( 2 x 20 mL ). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated under reduced pressure to give a crude product, which was purified by FCC using $20 \%$ ethyl acetate and hexane to afford macrolactone 17 as a colorless oil: ( $4.4 \mathrm{mg}, 0.0092 \mathrm{mmol}, 46 \%$ yield) IR $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3477,2971,2934,2878,1735,1711,1455,1382 ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.89(\mathrm{dd}, J=9.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.6 \mathrm{~Hz} 1 \mathrm{H}), 4.59(\mathrm{~d}, J$ $=11.6 \mathrm{~Hz} 1 \mathrm{H}), 3.86(\mathrm{~m}, J=11.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=14.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=18.7$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=4.7,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~m}$, $1 \mathrm{H}), 1.89(\mathrm{dd}, J=12.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=12.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, $1.27(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.3,212.6,173.2,137.5,128.8,128.4,128.0,88.5,78.9,78.4,77.8,76.3$, $72.0,42.1,40.5,39.6,35.4,34.9,25.2,23.1,17.0,15.0,14.2,11.0$; MS (ESI+) calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{7}+\mathrm{Na}\right]^{+}: 483.3$, found: 483.3.


The keto-alcohol 17 ( $4.0 \mathrm{mg}, 0.0082 \mathrm{mmol}$ ) was dissolved in 1.5 mL DCM then 2,6-lutidine ( 100 mg ) and TESOTf ( 120 mg ) was added respectively at rt , stirred at rt for 30 min then quenched by 10 mL saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Organic layer was diluted with 10 mL DCM, separated then concentrated under reduced pressure to give the crude product, which was Further purified by FCC
using $10 \%$ ethyl acetate in hexane to afford the product 18 as a colorless oil ( $4.0 \mathrm{mg}, 78 \%$ yield), which could be converted to a white crystalline by slow evaporation at rt in $1 \mathrm{~mL} 30 \%$ ethyl acetate in hexane: IR $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3444,2954,2928,2875,1738,1716,1456,1378,1183,1164$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.2(\mathrm{dd}, J=2.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.6(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=9.6,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~m}$, 1H), 2.78 (dd, $J=10.5,19.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.35 (dd, $J=1.5,19.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.24 (m, 1H), 2.17 (dd, $J$ $=3.8,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=11.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=7.0,12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.46(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{dd}$, $J=7.8,8.2 \mathrm{~Hz}, 9 \mathrm{H}), 0.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.56-0.54(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $215.5,211.4,172.9,137.7,129.1,128.5,128.3,88.6,79.6$ (2), 79.4, 78.1, 72.5, 41.6, 41.2, 39.8, $36.3,35.0,25.5,22.7,17.0,14.8,13.9,11.1,7.2,6.4 ; \mathrm{MS}(\mathrm{ESI}+)$ calculated for $\left[\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na}\right]^{+}$: 597.3, found: 597.3.



To a solution of macrolactone $\mathbf{1 2}(12 \mathrm{mg}, 0.020 \mathrm{mmol})$ in methanol $(3.0 \mathrm{~mL})$ was added a solution of DMDO ( $0.38 \mathrm{~mL}, 0.14 \mathrm{mmol}$ ) dropwise at $-50^{\circ} \mathrm{C}$. The solution was stirred under inert atmosphere and warmed to $-15{ }^{\circ} \mathrm{C}$ over 1.5 h . The mixture was then concentrated under reduced pressure to give the crude product, which was purified by FCC using $5 \%$ ethyl acetate in hexane to afford 19 as colorless oil ( $10 \mathrm{mg}, 81 \%$ ). For detailed NMR analysis, see page S28. IR vmax (neat) $/ \mathrm{cm}^{-1} 3442,3062,2956,2922,2850,1728,1711,1454,1376,1165,1070 ;{ }^{1} \mathrm{H}$ NMR ( 600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.48-7.17(\mathrm{~m}, 10 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=15.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=15.7,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=14.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 1,78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{dd}, J=14.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.6,202.1,171.9,145.3,138.6,138.6,128.4,128.3,128.2,127.8,127.5$, $127.4,127.2,101.1,93.9,84.9,83.0,75.8,69.8,66.3,42.3,41.4,33.5,26.4,19.9,18.0,17.4,14.6$, 9.7; MS (ESI + ) calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$: 539.3, found: 539.3; $[\alpha]^{25}{ }_{\mathrm{D}}=3.3^{\circ}(\mathrm{c}=0.005$, $\mathrm{CHCl}_{3}$ ).


To a solution of macrolactone $12(17.7 \mathrm{mg}, 0.0340 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added a solution of DMDO ( $0.56 \mathrm{~mL}, 0.21 \mathrm{mmol}$ ) dropwise at $-40^{\circ} \mathrm{C}$, warmed up to $-15^{\circ} \mathrm{C}$ over 30 min , then lower order methyl cyanocuprate ( $\mathrm{MeCuCNLi}, 0.71 \mathrm{mmol}$ ) was added, prepared by addition of $\operatorname{MeLi}(0.44 \mathrm{~mL}, 0.71 \mathrm{mmol})$ to a slurry of $\mathrm{CuCN}(63 \mathrm{mg}, 0.71 \mathrm{mmol})$ in 2-methyl THF $(5.99 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and then warming to $-15{ }^{\circ} \mathrm{C}$. The mixture was warmed to $-2{ }^{\circ} \mathrm{C}$ over 1.5 h , quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ (1:4 ratio) and then extracted with diethyl ether. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated under reduced pressure to give the crude product, which was purified by FCC using $15 \%$ ethyl acetate in hexane to afford $20(10 \mathrm{mg}, 64 \%$ yield) as a colorless oil. For detailed NMR analysis, see page S30. IR $v \max$ (neat)/ $\mathrm{cm}^{-1} 3434,2968,2925,1959,1764,1725,1452,1370,1155$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.60(\mathrm{dd}, J=8.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 2 \mathrm{H})$, $4.62(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=8.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=$ 8.1, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.06(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=15.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~m}$, $2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 218.9,206.6,171.0,138.9,128.2,127.7,127.3,99.0$, $90.7,83.4,82.3,79.7,76.6,72.5,70.2,42.9,40.2,34.0,24.3,22.8,14.5,13.8,13.6,10.0$; MS (ESI+) calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 465.2$, found: $465.5 ;[\alpha]^{25}=5.9^{\circ}\left(\mathrm{c}=0.005, \mathrm{CHCl}_{3}\right)$.


To a stirred solution of macrolactone $12(7.8 \mathrm{mg}, 0.015 \mathrm{mmol})$ in 1.0 mL of acetonitrile was added N -bromosuccinimide ( $34 \mathrm{mg}, 0.19 \mathrm{mmol}$ ) at rt then stirred for 5 min . The reaction mixture was quenched with 1 mL of saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and then extracted with diethyl ether ( $2 \times 5 \mathrm{~mL}$ ). The organic layer was separated and then concentrated under reduced pressure to
give the crude product which was purified by FCC using $14 \%$ ethyl acetate in hexane to afford 21 as colorless oil: $(9.1 \mathrm{mg}, 99 \%$ yield). For detailed NMR analysis, see page S32. IR vmax (neat) $/ \mathrm{cm}^{-1} 3442,3062,2956,2922,2850,1728,1711,1454,1376,1165,1070 ;{ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=10.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ $(\mathrm{d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=8.3,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=15.6,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.85(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{dd}, J=14.4,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 212.7,174.6,138.7,138.4,134.2,131.2,128.3(2), 128.1$, $127.7(2), 127.5,84.0,79.4,79.3,77.1,76.1,73.3,72.2,44.8,42.5,41.3,35.0,26.8,25.1,24.4$, 19.6, 12.6, 11.1; MS (ESI+) calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{BrO}_{7}+\mathrm{Na}\right]^{+}: 653.3$, 655.3 , found: 653.2, 655.2; $[\alpha]^{25}{ }_{D}=7.6^{\circ}\left(\mathrm{c}=0.005, \mathrm{CHCl}_{3}\right)$.


To a stirred solution of macrolactone $21(5.0 \mathrm{mg}, 0.0079 \mu \mathrm{~mol})$ in 1.00 mL of anhydrous diethyl ether was added $0.13 \mathrm{M} \mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ solution in anhydrous diethyl ether $(0.090 \mathrm{ml}, 0.012 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. The mixture was stirred for 30 mins at $0^{\circ} \mathrm{C}$, quenched with 1 mL of saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, then extracted with diethyl ether ( $2 \times 5 \mathrm{~mL}$ ). The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered then concentrated under reduced pressure to give the crude product, which was purified by FCC $20 \%$ ethyl acetate in hexane to afford $22(4.9 \mathrm{mg}, 98 \%$ yield) as an oil. For detailed NMR analysis, see page S34. IR vmax (neat) $/ \mathrm{cm}^{-1} 2925,2851,1729,1450,1375,1164$, 1068 ; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.23(\mathrm{~m}, 10 \mathrm{H}) 6.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=$ $11.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H})$, $4.11(\mathrm{dd}, J=8.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=7.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}$, $2 \mathrm{H}), 1.83(\mathrm{dd}, J=15.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=15.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=14.7,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{dd}, J=14.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8,139.0,137.9,133.0$, $131.4,128.3,128.1,128.0,127.9,127.6,126.5,84.7,81.3,78.2,77.6,75.2,73.7,73.1,71.9,44.8$,
$40.8,35.9,34.6,27.7,26.0,24.7,20.0,12.4,11.4$; MS (ESI + ) calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{O}_{7}+\mathrm{Na}\right]^{+}$: 655.2, 657.2, found: 655.2, 657.2; $[\alpha]^{25}{ }_{\mathrm{D}}=5.8^{\circ}\left(\mathrm{c}=0.005, \mathrm{CHCl}_{3}\right)$.

Detailed ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and selected NOE and HMBC data for 12-22

## Detailed NMR analysis for compounds 12



12

1H NMR chemical shifts (d/ppm) and coupling constant (J/Hz)
$2.78\left(\mathrm{dq}, \mathrm{J}_{\mathrm{H} 2, \mathrm{H} 3}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2,2-\mathrm{CH} 3}=7.1 \mathrm{~Hz}, \mathrm{H} 2\right)$
$1.26\left(\mathrm{~d}, \mathrm{~J}_{2-\mathrm{CH} 3, \mathrm{H} 2}=7.1 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$
3.95 (dd, $\left.\mathrm{J}_{\mathrm{H} 3, \mathrm{H} 2}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4}=4.0 \mathrm{~Hz}, \mathrm{H} 3\right)$
$5.33\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 4, \mathrm{H} 3}=4.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4,6-\mathrm{CH} 3}=2.9 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{\mathrm{H} 4, \mathrm{H} 7 \alpha}=2.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4, \mathrm{H} 7 \beta}=3.4 \mathrm{~Hz}, \mathrm{H} 4\right)$
$1.70\left(\mathrm{~d}, 6-\mathrm{CH}_{3}\right)$
$1.61\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 8}=5.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 7 \alpha}=15.4 \mathrm{~Hz}\right.$,
$\mathrm{J}_{\mathrm{H} 4, \mathrm{H} 7 \beta}=3.4 \mathrm{~Hz}, \mathrm{H} 7 \beta$ )
$2.18\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=5.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 7 \beta}=15.4 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{\mathrm{H} 4, \mathrm{H} 7 \alpha}=2.7 \mathrm{~Hz}, \mathrm{H} 7 \alpha\right)$
$1.96\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=5.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 8}=5.4 \mathrm{~Hz}\right.$,
$\left.\mathrm{J}_{\mathrm{H} 8,8-\mathrm{CH} 3}=6.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8, \mathrm{H} 9}=7.2 \mathrm{~Hz}, \mathrm{H} 8\right)$
1.05 (d, $\left.\mathrm{J}_{8-\mathrm{CH} 3, \mathrm{H} 8}=6.7 \mathrm{~Hz}, 8-\mathrm{CH}_{3}\right)$
3.74 (dd, $\left.\mathrm{J}_{\mathrm{H9}, \mathrm{H} 8}=7.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 9, \mathrm{H} 10}=7.8 \mathrm{~Hz}, \mathrm{H} 9\right)$
$5.13\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 9, \mathrm{H} 10}=7.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 10,12-\mathrm{CH} 3}=2.9 \mathrm{~Hz}\right.$, $\mathrm{J}_{\mathrm{H} 10-\mathrm{H} 13}=1.1 \mathrm{~Hz}, \mathrm{H} 10$ )
1.71 (d, $\left.\mathrm{J}_{\mathrm{H} 10,12-\mathrm{CH} 3}=2.9 \mathrm{~Hz}, 12-\mathrm{CH}_{3}\right)$
$5.26\left(\mathrm{dt}, \mathrm{J}_{\mathrm{H} 10-\mathrm{H} 13}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 13, \mathrm{H} 14}=6.8 \mathrm{~Hz}, \mathrm{H} 13\right)$
1.69, 1.67 ( $\mathrm{m}, 14-\mathrm{CH}_{2}$ )
0.90 ( $\mathrm{t}, \mathrm{J}_{14-\mathrm{CH} 3, \mathrm{H} 14}=7.5 \mathrm{~Hz}, 14-\mathrm{CH}_{3}$ )
4.64 (d, J=11.7Hz, 3-Bn-CH ${ }_{2}$ )
4.48 (d, J=11.7Hz, 3-Bn-CH2b)
4.54 (d, J=11.9Hz, 9-Bn-CH2a)
4.34 (d, J=11.9Hz, 9-Bn-CH2b)
173.8 ----- C1
44.5 ----- C2
77.2 ----- C3
90.5 ----- C4
201.2 ----- C5
102.4 ----- C6
37.7 ----- C7
35.9 ----- C8
81.6 ----- C9
91.7 ----- C10
203.4 ----- C11
99.0 ----- C12
75.5 ----- C13
24.9 ----- C14
15.2 ----- $2-\mathrm{CH}_{3}$
20.2 ----- $6-\mathrm{CH}_{3}$
17.6 ----- 8-CH3
14.0 ----- $12-\mathrm{CH}_{3}$
9.6 ----- $14-\mathrm{CH}_{3}$
7.22-7.35 (two phenyl)

## HMBC




NOESY


Detailed NMR analysis for compounds 13


| 1H NMR chemical shifts (d/ppm) and coupling constant (J/Hz) | 13C NMR chemical shift (d/ppm) |
| :---: | :---: |
| 2.58 (dq, $\mathrm{J}^{2} 2 . \mathrm{H}_{3}=8.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}_{2}, 2-\mathrm{CH}^{2}}$ | 173.84 --- C1 |
| 1.30 (d, $\left.\mathrm{J}_{2-\mathrm{CH} 3, \mathrm{H} 2}=6.8 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$ | 45.56 --- C2 |
| $4.15\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 2}=8.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \alpha}=3.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \mathrm{\beta}}=6.9 \mathrm{~Hz}, \mathrm{H} 3\right)$ | 76.0 ---- C3 |
| 4.15 (m, $\left.\mathrm{J}_{\mathrm{H} 3, \mathrm{H} 2}=8.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \alpha}=3.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \beta}=6.9 \mathrm{~Hz}, \mathrm{H} 3\right)$ | 42.6 --- C4 |
| 2.93 (dd, $\mathrm{J}_{\mathrm{H} 4 \alpha, \mathrm{H} 3}=3.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=17.7, \mathrm{H} 4 \alpha$ ) | 212.1 --- C5 |
| 2.96 (dd, $\left.\mathrm{J}_{\mathrm{H} 4 \beta, \mathrm{H} 3}=6.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=17.7, \mathrm{H} 4 \beta\right)$ | 78.9 ---- C6 |
| 1.32 (s, 6-CH3) | 43.0 ---- C7 |
| 1.90 (dd, $\left.\mathrm{J}_{\mathrm{H7} \mathrm{\beta}, \mathrm{H8}}=6.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H7} \beta, \mathrm{H} 7 \alpha}=15.1 \mathrm{~Hz}, \mathrm{H} 7 \beta\right)$ | 34.2 ---- C8 |
| 1.54 (dd, $\mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=3.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 7 \beta}=15.1 \mathrm{~Hz}, \mathrm{H} 7 \alpha$ ) | 82.3 ---- C9 |
| 1.69 (m, $\mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H8}}=3.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{\beta}, \mathrm{H8}}=6.6 \mathrm{~Hz}$, | 96.7 --- C10 |
| $\left.\mathrm{J}_{\mathrm{H8}, 8-\mathrm{CH} 3}=6.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8, \mathrm{H} 9}=6.8 \mathrm{~Hz}, \mathrm{H8}\right)$ | 204.0 ---- C11 |
| 1.05 (d, $\left.\mathrm{J}_{8-\mathrm{CH} 3, \mathrm{H8}}=6.8 \mathrm{~Hz}, 8-\mathrm{CH}_{3}\right)$ | 99.8 ---- C12 |
| 3.44 (dd, $\left.\mathrm{J}_{\mathrm{H9}, \mathrm{H8}}=6.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H9}, \mathrm{H} 10}=8.1 \mathrm{~Hz}, \mathrm{H} 9\right)$ | $\begin{array}{lll}76.5 & ---\mathrm{C} 13 \\ 25.3 & -\mathrm{C} \\ \text { C14 }\end{array}$ |
| 4.94 (m, $\left.\mathrm{J}_{\mathrm{H}, \mathrm{H} 10}=8.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 10, \mathrm{H} 13}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 10,12 \mathrm{CH} 3}=2.9 \mathrm{~Hz}, \mathrm{H} 10\right)$ | 13.7 ---- $2-\mathrm{CH}_{3}$ |
| 1.79 (d, $\left.\mathrm{J}_{\mathrm{H} 10,12-\mathrm{CH} 3}=2.9 \mathrm{~Hz}, 12-\mathrm{CH}_{3}\right)$ | $27.4-6 . \mathrm{CH}_{3}$ |
| 5.15 (m, $\left.\mathrm{J}_{\mathrm{H} 13, \mathrm{H} 14}=7.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 10, \mathrm{H} 13}=1.1 \mathrm{~Hz} \mathrm{H} 13\right)$ | $18.6-$--- $8-\mathrm{CH}_{3}$ |
| 1.69, 1.73 (m, 14-CH2) | 15.5 ---- 12-CH3 |
| 0.90 (t, J $\left.{ }_{14-\mathrm{CH} 3, \mathrm{H} 14}=7.4 \mathrm{~Hz}, 14-\mathrm{CH}_{3}\right)$ | $9.6-14-\mathrm{CH}_{3}$ |
| 4.34 (d, $\mathrm{J}_{\mathrm{H} 15 \mathrm{a}, \mathrm{H} 15 \mathrm{~b}}=12.2, \mathrm{H} 15 \mathrm{a}$ ) | 73.8 --- C16 |
| 4.60 (d, $\mathrm{J}_{\mathrm{H} 15 \mathrm{a}, \mathrm{H} 15 \mathrm{~b}}=12.2, \mathrm{H} 15 \mathrm{~b}$ ) | 70.0 ---- C15 |
| 4.56 (d, J=11.6Hz, H16a) | 138.6 ---- ips |
| 4.74 (d, J=11.6Hz, H16b) | 128.1 |
| 7.26-7.38 (m, 10H, two phenyl) |  |
|  | 138.4 ---- ${ }^{\text {ipso }}{ }^{\text {c-16 }}$ |
|  | 126.1 ---. ${ }^{\text {ortho }} \mathrm{C}-16$ |
|  | 128.5 ---- metac-16 |
|  | 127.7 ---- ${ }^{\text {para }} \mathrm{C}-16$ |

## HMBC



NOESY


Detailed NMR analysis for compounds 14


14

1H NMR chemical shifts (d/ppm) and coupling constant (J/Hz)

13C NMR chemical shift (d/ppm)
$2.76\left(\mathrm{dq}, \mathrm{J}_{\mathrm{H} 2, ~ \mathrm{H} 3}=7.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2,2-\mathrm{CH} 3}=6.9 \mathrm{~Hz}, \mathrm{H} 2\right)$
$1.24\left(\mathrm{~d}, \mathrm{~J}_{2-\mathrm{CH} 3, \mathrm{H} 2}=6 . \mathrm{Hz}, 2-\mathrm{CH}_{3}\right)$
$3.92\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 2}=7.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \alpha}=3.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \beta}=7.1 \mathrm{~Hz}, \mathrm{H} 3\right)$
$1.86\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H} 4 \alpha, \mathrm{H} 3}=3.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=15.0, \mathrm{H} 4 \alpha\right)$
1.83 (dd, $\mathrm{J}_{\mathrm{H} 4 \beta, \mathrm{H} 3}=7.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=15.0, \mathrm{H} 4 \beta$ )
$3.59\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 5}=9.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \beta, \mathrm{H} 5}=2.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5-5-\mathrm{OH}}=6.21 \mathrm{~Hz}, \mathrm{H} 5\right)$
1.16 (s, 6-CH3)
2.89 (s, 6-OH)
$1.99\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H} 7 \beta, \mathrm{H} 8}=5.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 7 \alpha}=14.8 \mathrm{~Hz}, \mathrm{H} 7 \beta\right.$ )
1.07 (dd, $\left.\mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=3.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 7 \beta}=14.8 \mathrm{~Hz}, \mathrm{H} 7 \alpha\right)$
$2.06\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=3.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 8}=5.3 \mathrm{~Hz}\right.$,
$\left.\mathrm{J}_{\mathrm{H} 8,8-\mathrm{CH} 3}=6.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8, \mathrm{H} 9}=5.5 \mathrm{~Hz}, \mathrm{H} 8\right)$
1.00 (d, $\mathrm{J}_{8-\mathrm{CH} 3, \mathrm{H} 8}=6.9 \mathrm{~Hz}, 8-\mathrm{CH}_{3}$ )
3.69 (dd, $\left.\mathrm{J}_{\mathrm{H} 9, ~ \mathrm{H} 8}=5.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 9, \mathrm{H} 10}=7.5 \mathrm{~Hz}, \mathrm{H} 9\right)$
$5.21\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 9, \mathrm{H} 10}=7.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 10, \mathrm{H} 13}=1.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 10,12-\mathrm{CH} 3}=3.0 \mathrm{~Hz}, \mathrm{H} 10\right)$
1.74 (d, $\left.\mathrm{J}_{\mathrm{H} 10,12-\mathrm{CH} 3}=3.0 \mathrm{~Hz}, 12-\mathrm{CH}_{3}\right)$
$5.38\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 13, \mathrm{H} 14}=6.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 10, \mathrm{H} 13}=1.2 \mathrm{~Hz} \mathrm{H13}\right)$
1.72 (m, 14-CH2)
0.91 ( $\mathrm{t}, \mathrm{J}_{14-\mathrm{CH} 3, \mathrm{H} 14}=7.3 \mathrm{~Hz}, 14-\mathrm{CH}_{3}$ )
4.59 ( $\mathrm{d}, \mathrm{J}_{\mathrm{H} 15 \mathrm{a}, \mathrm{H} 15 \mathrm{~b}}=11.1, \mathrm{H} 15 \mathrm{a}$ )
4.60 (d, $\left.\mathrm{J}_{\mathrm{H} 15 \mathrm{a}, \mathrm{H} 15 \mathrm{~b}}=11.1, \mathrm{H} 15 \mathrm{~b}\right)$
4.42 (d, J=12.3Hz, H16a)
4.74 (d, J=12.3Hz, H16b)
7.27-7.37 (m, 10H, two phenyl)

## HMBC



NOESY


Detailed NMR analysis for compounds 16



HMBC



NOESY



Detailed NMR analysis for compounds 17


| 1H NMR chemical shifts (d/ppm) and coupling constant ( $\mathrm{J} / \mathrm{Hz}$ ) | 13C NMR chemical shift (d/ppm) |
| :---: | :---: |
| 2.89 (dq, $\left.\mathrm{J}_{\mathrm{H} 2, \mathrm{H} 3}=11.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2,2-\mathrm{CH3}}=7.3 \mathrm{~Hz}, \mathrm{H} 2\right)$ | 173.2 ----- C1 |
| 1.21 (d, $\left.\mathrm{J}_{2 \text { - } \mathrm{CH} 3, \mathrm{H} 2}=7.3 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$ | 42.1 ----- C2 |
| 3.86 ( $\left.\mathrm{m}, \mathrm{J}_{\mathrm{H} 3, \mathrm{H} 2}=11.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}, \mathrm{H} 4 \alpha}=4.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \beta}=6.4 \mathrm{~Hz}, \mathrm{H} 3\right)$ | 78.4 ----- C3 |
| 2.29 (dd, $\left.\mathrm{J}_{\mathrm{H} 4 \alpha, \mathrm{H} 3}=4.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=14.5, \mathrm{H} 4 \alpha\right)$ | 35.4 ----- C4 |
| 3.37 (dd, $\left.\mathrm{J}_{\mathrm{H} 4 \beta, \mathrm{H} 3}=6.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=14.5, \mathrm{H} 4 \beta\right)$ | 212.6 ----- C5 |
| 1.27 (s, 6-CH3) | 88.5 ----- C6 |
| 1.89 (dd, $\mathrm{J}_{\mathrm{H} 7 \beta, \mathrm{H8}}=9.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 7 \alpha}=12.9 \mathrm{~Hz}, \mathrm{H} 7 \beta$ ) | 40.5 ----- C7 |
| 1.79 (dd, $\left.\mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H8}}=7.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 7 \beta}=12.9 \mathrm{~Hz}, \mathrm{H} 7 \alpha\right)$ | 34.9 ----- C8 |
| 2.40 ( $\mathrm{m}, \mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H8}}=7.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \text {, }}$ н $8=9.1 \mathrm{~Hz}$, | 76.3 ----- C9 |
| $\left.\mathrm{J}_{\mathrm{H8}, 8-\mathrm{CH} 3}=7.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H8}, \mathrm{H9}}=6.9 \mathrm{~Hz}, \mathrm{H8}\right)$ | 39.6 ----- C10 |
| 0.67 (d, $\mathrm{J}_{8-\mathrm{CH3}, \mathrm{H8}}=7.0 \mathrm{~Hz}, 8-\mathrm{CH}_{3}$ ) | 213.3 ----- C11 |
| 4.63 (ddd, $\mathrm{J}_{\mathrm{H9}, \mathrm{H} 8}=6.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 9, \mathrm{H} 10 \alpha}=10.2 \mathrm{~Hz}$, | 77.8 ----- C12 |
| $\left.\mathrm{J}_{\mathrm{H9}, \mathrm{H} 10 \beta}=1.5 \mathrm{~Hz} \mathrm{H} 9\right)$ | 78.9 ----- C13 |
| 3.08 (dd, $\left.\mathrm{J}_{\mathrm{H9}, \mathrm{H} 10 \beta}=10.2 \mathrm{~Hz}, \mathrm{~J}_{10 \beta, \mathrm{H} 10 \alpha}=18.7 \mathrm{~Hz} \mathrm{H10} \mathrm{\beta}\right)$ | 23.1 ----- C14 |
| 2.29 (dd, $\mathrm{J}_{\mathrm{H} 9, \mathrm{H} 10 \alpha}=1.5 \mathrm{~Hz}, \mathrm{~J}_{10 \alpha, \mathrm{H} 10 \beta}=18.7 \mathrm{~Hz} \mathrm{H10} \alpha$ ) | 15.0 ----- $2-\mathrm{CH}_{3}$ |
| 1.38 (s, 12-CH3) | 25.2 ----- $6-\mathrm{CH}_{3}$ |
| 4.89 (dd, $\left.\mathrm{J}_{\mathrm{H} 13, \mathrm{H} 14}=3.4,9.0 \mathrm{~Hz}, \mathrm{H} 13\right)$ | 14.2 ----- $8-\mathrm{CH}_{3}$ |
| 1.55, 1.97 (m, 14-CH2) | 17.0 ----- $12-\mathrm{CH}_{3}$ |
| 0.93 (t, J ${ }_{14-\mathrm{CH} 3, \mathrm{H} 14}=7.5 \mathrm{~Hz}, 14-\mathrm{CH}_{3}$ ) | 11.0 ----- $14-\mathrm{CH}_{3}$ |
| 4.57 (d, J=11.6Hz, Bn-CH2 ${ }^{\text {a }}$ ) | 137.5 ----- ipso ${ }^{\text {c }}$ |
| 4.59 (d, J=11.6Hz, Bn-CH2 ${ }_{2}$ ) | 128.8 ----- ${ }^{\text {ortho }} \mathrm{C}$ |
| 7.35 ( ${ }^{\circ} \mathrm{H} / \mathrm{Ph}$ ) | 128.4 ----- metac |
| 7.34 ( ${ }^{\text {m}} \mathrm{H} / \mathrm{Ph}$ ) | 128.0 ----- ${ }^{\text {para }} \mathrm{C}$ |
| 7.30 ( ${ }^{\mathrm{P}} \mathrm{H} / \mathrm{Ph}$ ) | 72.0 ----- $15-\mathrm{CH}_{2}$ |

## HMBC



NOESY



Detailed NMR analysis for compounds 18


| 1H NMR chemical shifts (d/ppm) and coupling constant ( $\mathrm{J} / \mathrm{Hz}$ ) | 13C NMR chemical shift (d/ppm) |  |  |
| :---: | :---: | :---: | :---: |
| 2.92 (dq, $\left.\mathrm{J}_{\mathrm{H} 2, \mathrm{H} 3}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2,2-\mathrm{CH} 3}=7.0 \mathrm{~Hz}, \mathrm{H} 2\right)$ | 172.9 |  | C1 |
| 1.14 (d, $\mathrm{J}_{2-\mathrm{CH} 3, \mathrm{H} 2}=7.0 \mathrm{~Hz}, 2-\mathrm{CH}_{3}$ ) | 41.6 | ----- | C2 |
| $3.87\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 2}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \alpha}=3.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \beta}=9.6 \mathrm{~Hz}, \mathrm{H} 3\right)$ | 79.6 | ----- | C3 |
| 2.17 (dd, $\mathrm{J}_{\mathrm{H} 4 \alpha, \mathrm{H} 3}=3.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=14.9, \mathrm{H} 4 \alpha$ ) | 36.3 | ----- | C4 |
| 3.26 (dd, $\mathrm{J}_{\mathrm{H} 4 \beta, \mathrm{H} 3}=9.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=14.9, \mathrm{H} 4 \beta$ ) | 215.5 | ----- | C5 |
| 1.28 (s, 6-CH3) | 88.6 | ----- | C6 |
| 1.73 (dd, $\mathrm{J}_{\mathrm{H} 7 \beta, \mathrm{H} 8}=7.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 7 \alpha}=12.6 \mathrm{~Hz}, \mathrm{H} 7 \beta$ ) | 41.2 | ----- | C7 |
| 1.81 (dd, $\mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=11.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 7 \beta}=12.6 \mathrm{~Hz}, \mathrm{H} 7 \alpha$ ) | 35.0 | ----- | C8 |
| 2.24 (m, $\mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=11.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 8}=7.0 \mathrm{~Hz}$, | 78.1 | ----- | C9 |
| $\left.\mathrm{J}_{\mathrm{H8}, 8-\mathrm{CH} 3}=6.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H8}, \mathrm{H} 9}=7.4 \mathrm{~Hz}, \mathrm{H} 8\right)$ | 39.8 | ----- | C10 |
| 0.68 (d, $\mathrm{J}_{8-\mathrm{CH} 3, \mathrm{H8}}=6.9 \mathrm{~Hz}, 8-\mathrm{CH}_{3}$ ) | 211.4 |  | C11 |
| 4.48 (ddd, $\mathrm{J}_{\mathrm{H} 9, \mathrm{H} 8}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 9, \mathrm{H} 10 \alpha}=1.5 \mathrm{~Hz}$, | 79.4 | ----- | C12 |
| $\left.\mathrm{J}_{\mathrm{H} 9, \mathrm{H} 10 \beta}=10.5 \mathrm{~Hz} \mathrm{H} 9\right)$ | 79.6 | ----- | C13 |
| 2.78 (dd, $\left.\mathrm{J}_{\mathrm{H9,H} 10 \beta}=10.5 \mathrm{~Hz}, \mathrm{~J}_{10 \beta, \mathrm{H} 10 \alpha}=19.0 \mathrm{~Hz} \mathrm{H10} \mathrm{\beta}\right)$ | 22.7 | ----- | C14 |
| 2.35 (dd, $\mathrm{J}_{\mathrm{H} 9, \mathrm{H} 10 \alpha}=1.5 \mathrm{~Hz}, \mathrm{~J}_{10 \alpha, \mathrm{H} 10 \beta}=19.0 \mathrm{~Hz} \mathrm{H10} \alpha$ ) | 14.8 | ----- | 2-CH3 |
| 1.33 (s, 12-CH3) | 25.5 | ---- | $6-\mathrm{CH}_{3}$ |
| 5.20 (dd, $\left.\mathrm{J}_{\mathrm{H} 13, \mathrm{H} 14}=2.9,9.5 \mathrm{~Hz}, \mathrm{H} 13\right)$ | 13.9 | ----- | $8-\mathrm{CH}_{3}$ |
| 1.46, 1.89 (m, 14-CH2) | 17.0 | ---- | $12-\mathrm{CH}_{3}$ |
| 0.91 (t, J ${ }_{14-\mathrm{CH} 3, \mathrm{H} 14}=7.2,7.6 \mathrm{~Hz}, 14-\mathrm{CH}_{3}$ ) | 11.1 |  | $14-\mathrm{CH}_{3}$ |
| 4.44 (d, J=10.4Hz, Bn-CH2a) | 137.7 |  | ${ }^{\text {ipso }} \mathrm{C}$ |
| 4.60 (d, J=10.4Hz, Bn-CH2b) | 129.1 |  | ${ }^{\text {ortho }} \mathrm{C}$ |
| 0.54, 0.56(m, H16) | 128.5 |  | ${ }^{\text {meta }} \mathrm{C}$ |
| 0.89 (dd, J= 8.2, $7.8 \mathrm{~Hz}, 16-\mathrm{CH}_{3}$ ) | 128.3 |  | ${ }^{\text {para }} \mathrm{C}$ |
| 7.33 ( ${ }^{\circ} \mathrm{H} / \mathrm{Ph}$ ) | 72.5 | -- | $15-\mathrm{CH}_{2}$ |
| 7.33 ( ${ }^{\mathrm{m}} \mathrm{H} / \mathrm{Ph}$ ) | 6.4 | ----- | C16 |
| 7.30 ( ${ }^{\text {P }} \mathrm{H} / \mathrm{Ph}$ ) | 7.2 |  | $16-\mathrm{CH}_{3}$ |

HMBC

noesy


Detailed NMR analysis for compound 19.


| 1H NMR chemical shifts (d/ppm) \& coupling constant ( $\mathrm{J} / \mathrm{Hz}$ ) | 13C NMR chemical shift (d/ppm) |  |  |
| :---: | :---: | :---: | :---: |
| 3.30 (ddd, $\left.\mathrm{J}_{\mathrm{H} 2, \mathrm{H} 3}=8.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2,2-\mathrm{CH} 3}=6.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2, \mathrm{H} 4}=1.1 \mathrm{~Hz}, \mathrm{H} 2\right)$ | 171.9 |  | C1 |
| 1.32 (d, $\left.\mathrm{J}_{2-\mathrm{CH} 3, \mathrm{H} 2}=6.8 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$ | 42.3 | ----- | C2 |
| 6.73 (dd, $\left.\mathrm{J}_{\mathrm{H} 3, \mathrm{H} 4}=15.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 2}=8.3 \mathrm{~Hz}, \mathrm{H} 3\right)$ | 145.3 |  | C3 |
| $7.05\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H} 4, \mathrm{H} 3}=15.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4, \mathrm{H} 2}=1.2 \mathrm{~Hz}, \mathrm{H} 4\right)$ | 127.8 |  | C4 |
| 1.44 (s, 6-CH3) | 202.1 |  | C5 |
| 4.26 (d, $\left.\mathrm{J}_{\mathrm{AB}}=11.5 \mathrm{~Hz}, 6-\mathrm{OCH}_{2}\right)$ | 84.9 | ----- | C6 |
| 4.56 (d, $\left.\mathrm{J}_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 6-\mathrm{OCH}_{2}\right)$ | 41.4 | ---- | C7 |
| 1.95 (dd, $\mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H} 7 \beta}=14.2 \mathrm{~Hz}, \mathrm{H} 7 \beta$ ) | 33.5 | ---- | C8 |
| 1.48 (dd, $\mathrm{J}_{\mathrm{H} 7 \beta, \mathrm{H} 8}=6.85 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 7 \alpha}=14.4 \mathrm{~Hz}, \mathrm{H} 7 \alpha$ ) | 83.0 | ---- | C9 |
| 1.41 (m, H8) | 93.9 | ----- | C10 |
| 1.09 (d, $\left.\mathrm{J}_{8-\mathrm{CH} 3, \mathrm{H8}}=6.6 \mathrm{~Hz}, 8-\mathrm{CH}_{3}\right)$ | 202.6 | - | C11 |
| 3.24 (t, J $\left.{ }_{\text {H9, } \mathrm{H} 8}=9.1 \mathrm{~Hz}, \mathrm{H} 9\right)$ | 101.1 |  | C12 |
| 4.24 (d, $\left.\mathrm{J}_{\mathrm{AB}}=11.5 \mathrm{~Hz}, 9-\mathrm{OCH}_{2}\right)$ | 75.8 | ----- | C13 |
| 4.57 (d, $\left.\mathrm{J}_{\mathrm{AB}}=11.0 \mathrm{~Hz}, 9-\mathrm{OCH}_{2}\right)$ | 26.4 | ----- | C14 |
| 4.62 (dq, J = 9.31Hz, H10) | 14.6 | ---- | $2-\mathrm{CH}_{3}$ |
| 1.82 (d, $\left.\mathrm{J}_{12-\mathrm{CH} 3, \mathrm{H} 10}=2.9 \mathrm{~Hz}, 12-\mathrm{CH}_{3}\right)$ | 17.4 |  | $6-\mathrm{CH}_{3}$ |
| 4.71 (ddd, $\left.\mathrm{J}_{\mathrm{H} 13,14-\mathrm{CH} 2}=6.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 13, \mathrm{H} 10}=1.6 \mathrm{~Hz}, \mathrm{H} 13\right)$ | 19.9 |  | $8-\mathrm{CH}_{3}$ |
| 1.68-1.78 (m, 14-CH2) | 18.0 |  | $12-\mathrm{CH}_{3}$ |
| 0.99 (t, $\left.\mathrm{J}_{14-\mathrm{CH3}, 13-\mathrm{CH2}}=7.3 \mathrm{~Hz}, 14-\mathrm{CH}_{3}\right)$ | 9.7 | ---- | $14-\mathrm{CH}_{3}$ |
| 7.48-7.17 (m, 8H, Ph) | 66.3 |  | 6-OCH3 |
|  | 69.8 |  | $9-\mathrm{OCH}_{3}$ |



NOESY


## Detailed NMR analysis for compound 20



| 1H NMR chemical shifts (d/ppm) \& coupling constant ( $\mathrm{J} / \mathrm{Hz}$ ) | 13C NMR chemical shift (d/ppm) |  |  |
| :---: | :---: | :---: | :---: |
| 3.06 dq, $\left.\mathrm{J}_{\mathrm{H} 2, \mathrm{H} 3}=4.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2,2-\mathrm{CH3}}=7.4 \mathrm{~Hz}, \mathrm{H} 2\right)$ | 171.0 |  | C1 |
| 1.35 (d, $\left.\mathrm{J}_{2-\mathrm{CH} 3, \mathrm{H} 2}=7.4 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$ | 40.2 | ----- | C2 |
| 3.90 (dd, $\left.\mathrm{J}_{\mathrm{H} 3, \mathrm{H} 2}=4.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4}=8.7 \mathrm{~Hz}, \mathrm{H} 3\right)$ | 79.7 | ----- | C3 |
| 5.07 (d, $\left.\mathrm{J}_{\mathrm{H} 4, \mathrm{H} 3}=8.7 \mathrm{~Hz}, \mathrm{H} 4\right)$ | 72.5 | ----- | C4 |
| 1.14 (s, 6-CH3) | 218.9 |  | C5 |
| 1.65 (dd, $\mathrm{J}_{\mathrm{H} 7 \beta, \mathrm{H} 8}=3.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 7 \alpha}=15.0 \mathrm{~Hz}, \mathrm{H} 7 \beta$ ) | 83.4 | ----- | C6 |
| 1.87 (dd, $\mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=5.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 7 \beta}=15.0 \mathrm{~Hz}, \mathrm{H} 7 \alpha$ ) | 42.9 | ----- | C7 |
| 1.70 (m, H8) | 34.0 | ----- | C8 |
| 0.88 (d, $\left.\mathrm{J}_{8-\mathrm{CH} 3, \mathrm{H} 8}=7.0 \mathrm{~Hz}, 8-\mathrm{CH}_{3}\right)$ | 82.3 | ----- | C9 |
| 3.83 (dd, $\left.\mathrm{J}_{\mathrm{H} 9, \mathrm{H} 8}=2.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 9, \mathrm{H} 10}=8.1 \mathrm{~Hz}, \mathrm{H} 9\right)$ | 90.7 | -- | C10 |
| 4.62, $4.36\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{AB}}=12.1 \mathrm{~Hz}, 9-\mathrm{OCH}_{2}\right)$ | 206.6 |  | C11 |
| 5.07 (qd, H10) | 99.0 | --- | C12 |
| 1.80 (d, 12-CH3) | 76.6 | ----- | C13 |
| 5.60 (dd, $\left.\mathrm{J}_{\mathrm{H} 13, \mathrm{H} 14}=6.3,8.1 \mathrm{~Hz}, \mathrm{H} 13\right)$ | 24.3 | ----- | C14 |
| 1.65, 1.70 (m, 14-CH2) | 13.8 | -- | $2-\mathrm{CH}_{3}$ |
| 0.93 (t, J $\left.{ }_{14-\mathrm{CH} 3, \mathrm{H} 14}=7.6 \mathrm{~Hz}, 14-\mathrm{CH}_{3}\right)$ | 22.8 | ----- | $6-\mathrm{CH}_{3}$ |
|  | 14.5 | --- | $8-\mathrm{CH}_{3}$ |
|  | 13.6 |  | $12-\mathrm{CH}_{3}$ |
|  | 10.0 |  | $14-\mathrm{CH}_{3}$ |
|  | 70.2 |  | $9-\mathrm{OCH}_{3}$ |



Detailed NMR analysis for compound 21


| 1H NMR chemical shifts (d/ppm) \& coupling constant ( $\mathrm{J} / \mathrm{Hz}$ ) | 13C NMR chemical shift (d/ppm) |  |  |
| :---: | :---: | :---: | :---: |
| 2.56 (quintet, $\mathrm{J}_{\mathrm{H} 2,2-\mathrm{CH3}}=6.9 \mathrm{~Hz}, \mathrm{H} 2$ ) | 174.6 |  | C1 |
| 1.20 (d, $\left.\mathrm{J}_{2-\mathrm{CH} 3, \mathrm{H} 2}=6.9 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)$ | 42.5 | ----- | C2 |
| 4.34 (m, H3) | 76.1 | ----- | C3 |
| 4.64, $4.52\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{AB}}=11.1 \mathrm{~Hz}, \mathrm{C3}-\mathrm{OCH}_{2}\right)$ | 44.8 | ----- | C4 |
| 3.11 (dd, $\mathrm{J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=15.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 3}=6.4 \mathrm{~Hz}, \mathrm{H} 4 \alpha$ ) | 212.7 |  | C5 |
| 2.47 (dd, $\left.\mathrm{J}_{\mathrm{H} 4 \beta, \mathrm{H} 4 \alpha}=15.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \beta, \mathrm{H} 3}=5.7 \mathrm{~Hz}, \mathrm{H} 4 \beta\right)$ | 79.4 | ---- | C6 |
| 1.23 (s, 6-CH3) | 41.3 | ----- | C7 |
| 1.79 (dd, $\mathrm{J}_{\mathrm{H} 7 \beta, \mathrm{H} 7 \alpha}=14.4 \mathrm{~Hz}, \mathrm{H} 7 \beta$ ) | 35.0 | ----- | C8 |
| 1.45 ( $\left.\mathrm{H}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=5.90 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 7 \beta}=14.4 \mathrm{~Hz}, \mathrm{H} 7 \alpha\right)$ | 84.0 | ----- | C9 |
| 1.70-1.85 (m, H8) | 131.2 |  | C10 |
| 1.05 (d, $\left.\mathrm{J}_{8-\mathrm{CH} 3, \mathrm{H8}}=6.6 \mathrm{~Hz}, 8-\mathrm{CH}_{3}\right)$ | 134.2 |  | C11 |
| 4.00 (dd, $\left.\mathrm{J}_{\mathrm{H9}, \mathrm{H} 10}=8.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H9}, \mathrm{H} 8}=6.1 \mathrm{~Hz}, \mathrm{H} 9\right)$ | 77.1 | ---- | C12 |
| 4.52, 4.40 (d, $\left.\mathrm{J}_{\mathrm{AB}}=12.3 \mathrm{~Hz}, 9-\mathrm{OCH}_{2}\right)$ | 79.3 | ----- | C13 |
| 6.14 (d, J = 8.4Hz, H10) | 24.4 | --- | C14 |
| 1.44 (s, 12-CH3) | 12.6 | ----- | $2-\mathrm{CH}_{3}$ |
| 4.89 (dd, $\left.\mathrm{J}_{\mathrm{H} 13, \mathrm{H} 14}=2.4,10.9 \mathrm{~Hz}, \mathrm{H} 13\right)$ | 26.8 | ----- | $6-\mathrm{CH}_{3}$ |
| 1.75-1.82, 1.47-1.55 (m, 14-CH2) | 19.6 | ----- | $8-\mathrm{CH}_{3}$ |
| 0.80 (t, J $\left.{ }_{14-\mathrm{CH} 3, \mathrm{H} 14}=7.4 \mathrm{~Hz}, 14-\mathrm{CH}_{3}\right)$ | 25.1 |  | $12-\mathrm{CH}_{3}$ |
|  | 11.1 |  | $14-\mathrm{CH}_{3}$ |
|  | 73.3 |  | 6-OCH3 |
|  | 72.2 |  | 9-OCH3 |

HMBC


NOESY


Detailed NMR analysis for compound 22


| 1H NMR chemical shifts (d/ppm) \& coupling constant ( $\mathrm{J} / \mathrm{Hz}$ ) | 13C NMR chemical shift (d/ppm) |
| :---: | :---: |
| ```\(2.65\left(\mathrm{qd}, \mathrm{J}_{\mathrm{H} 2,2-\mathrm{CH} 3}=6.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2, \mathrm{H} 3}=13.4 \mathrm{~Hz}, \mathrm{H} 2\right)\) \(1.27\left(\mathrm{~d}, \mathrm{~J}_{2-\mathrm{CH} 3, \mathrm{H} 2}=7.0 \mathrm{~Hz}, 2-\mathrm{CH}_{3}\right)\) 4.36 (ddd. \(\left.\mathrm{J}_{\mathrm{H} 3, \mathrm{H} 2}=8.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \alpha}=6.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3, \mathrm{H} 4 \beta}=2.9 \mathrm{~Hz}, \mathrm{H} 3\right)\) 4.58, \(4.51\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{AB}}=10.7 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{OCH}_{2}\right)\) 1.83 (dd, \(\left.\mathrm{J}_{\mathrm{H} 4 \alpha, \mathrm{H} 4 \beta}=15.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \alpha, \mathrm{H} 3}=8.5 \mathrm{~Hz}, \mathrm{H} 4 \alpha\right)\) 1.77 (dd, \(\mathrm{J}_{\mathrm{H} 4 \beta, \mathrm{H} 4 \alpha}=15.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \beta, \mathrm{H} 3}=3.0 \mathrm{~Hz}, \mathrm{H} 4 \beta\) ) \(3.51\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H} 5, \mathrm{H} 4 \alpha}=2.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5}, \mathrm{H}_{4}=7.0 \mathrm{~Hz}, \mathrm{H} 5\right)\) 1.28 (s, 6-CH3) \(1.61\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H} 7 \beta, \mathrm{H} 8}=6.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \beta, \mathrm{H} 7 \alpha}=14.7 \mathrm{~Hz}, \mathrm{H} 7 \beta\right.\) ) 1.17 ( \(\mathrm{dd}, \mathrm{J}_{\mathrm{H} 7 \alpha, \mathrm{H} 8}=7.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \alpha, \mathrm{H} 7 \beta}=14.9 \mathrm{~Hz}, \mathrm{H} 7 \alpha\) ) \(2.31\left(\mathrm{dt}, \mathrm{J}_{\mathrm{H} 8,8-\mathrm{CH} 3}=6.4 \mathrm{~Hz}, \mathrm{H} 8\right)\) \(1.12\left(\mathrm{~d}, \mathrm{~J}_{8-\mathrm{CH}}, \mathrm{H} 8=6.7 \mathrm{~Hz}, 8-\mathrm{CH}_{3}\right)\) \(4.11\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H} 9, \mathrm{H} 10}=8.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 9, \mathrm{H} 8}=6.6 \mathrm{~Hz}, \mathrm{H} 9\right)\) \(4.58,4.47\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{AB}}=12.4 \mathrm{~Hz}, 9-\mathrm{OCH}_{2}\right)\) \(6.38\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H} 10, \mathrm{H} 9}=8.6 \mathrm{~Hz}, \mathrm{H} 10\right)\) \(1.50\left(\mathrm{~s}, 12-\mathrm{CH}_{3}\right)\) 4.88 (dd, \(\left.\mathrm{J}_{\mathrm{H} 13, \mathrm{H} 14}=2.3,11.0 \mathrm{~Hz}, \mathrm{H} 13\right)\) 1.73-1.85 (m, 14-CH2) 0.89 ( \(\mathrm{t}, \mathrm{J}_{14-\mathrm{CH} 3, \mathrm{H} 14}=7.4 \mathrm{~Hz}, 14-\mathrm{CH}_{3}\) )``` |  |

## HMBC




NOESY



$$
{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$


${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR (125MHz, $\mathrm{CDCl}_{3}$ )


(3)













gCOSY, DPFGSENOE, gHMBC and HETCOR of compound 13






HETCOR

Jun22nd-H1-KL-2-027
Std proton
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





NOESY





gCOSY, NOSEY and gHMBC of compound 16


## NOSEY








gHMBC
correlations


gCOSY, NOSEY, gHMBC and HETCOR of compound 18






gCOSY, NOSEY, and gHMBC of compound 19





gCOSY, NOSEY, and gHMBC of compound 20






## 1DTOCSY, NOSEY, and gHMBC of compound 21

1D TOCSY

1D TOCSY




${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


gCOSY, NOSEY, and gHMBC of compound 22

gCOSY


NOESY


Crystal structure of compound 18


Crystal structure of compound 18 (From different angle)


Ellipsoid plot of compound 18


See .cif file for compound coordinates

## Full list of authors in reference $\mathbf{6 i - 6 k}$

6i) Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, H.-J., Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, H. N.-C. J. Am. Chem. Soc, 1981, 103, 3210

6j) Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, H.-J., Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, H. N.-C. J. Am. Chem. Soc, 1981, 103, 3213

6k) Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, H.-J., Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, H. N.-C. J. Am. Chem. Soc, 1981, 103, 3215

