First-Principles study of water dissociation on PdZn near surface

alloys

Yucheng Huang ^{a,b}, Zhao-Xu Chen ^{a,*}

^{*a*} Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China ^b School of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, P. R. China

Table S1. The reaction heat and energy barrier for water dissociation on 221^{Pd} step of PdZn(221) surface. Zero-point correction values are in parentheses.

	multilayer		monolayer	
	ΔH	E_a	ΔH	E_a
monomer	0.62 (0.48)	1.14 (0.95)	0.28 (0.16)	0.95(0.72)
1D-chain	0.62 (0.44)	1.14 (0.95)	0.31 (0.14)	0.90 (0.73)

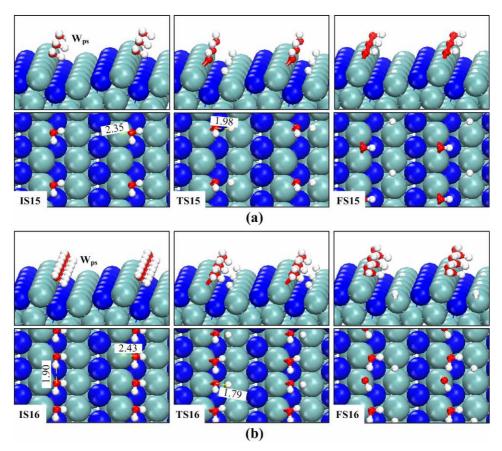
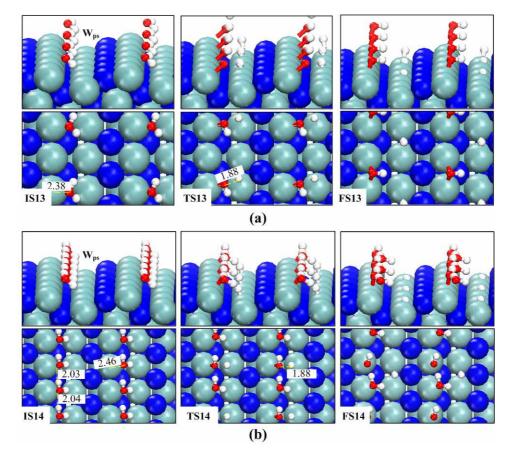



Figure S1. Structures of initial states, transition states and final states for water monomer (a) and 1D-chain (b) dissociation on 221^{Pd} surface of PdZn multilayer. The upper/lower panel is the

^{*} Corresponding author. Fax: +86 2583593353. E-mail address: zxchen@nju.edu.cn

side/top view. Blue balls denote Zn atoms. The O-Zn and O-H bond length are in Å.

Figure S2. Structures of initial states, transition states and final states for water monomer (a) and 1D-chain (b) dissociation on 221^{Pd} surface of PdZn monolayer. The upper/lower panel is the side/top view. Blue balls denote Zn atoms. The O-Zn and O-H bond length are in Å.