Supporting Information

Different Effects of a Co-template and $[TM(phen)_m]^{2+}$ (m = 1-3) Complex Cations on the Self-assembly of a Series of Hybrid Selenidostannates Showing Combined Optical Properties of Organic and Inorganic Components

Guang-Ning Liu, Guo-Cong Guo,* Ming-Jian Zhang, Jin-Shuang Guo, Hui-Yi Zeng, and Jin-Shun Huang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

Figure S1. The experimental PXRD patterns of **1–5** (black) are in good agreement with their corresponding simulated PXRD patterns calculated from single-crystal X-ray data (red).

Table S1. Ranges of Selected Bond Distances (Å) and Angles (°) for 1–5.

		1	
Sn–Se	2.452(1)-2.602(1)	Se-Sn-Se	93.654(13)-114.833(18)

Sn-Se-Sn	86.346(13)		
		2a	
Sn–Se	2.477(1)-2.582(1)	Mn–Se	2.672(1)-2.704(1)
Mn–N	2.292(2)-2.373(2)	Se–Sn–Se	93.96(2)-117.36(2)
Sn-Se-Sn	86.04(2)	N-Mn-N	70.97(8)-149.77(8)
N-Mn-Se	89.69(5)-170.56(6)	Se-Mn-Se	92.48(2)
		2b	
Sn–Se	2.468(1)-2.576(1)	Fe–Se	2.599(1)-2.615(1)
Fe–N	2.187(2)-2.263(2)	Se–Sn–Se	95.01(1)-117.61(1)
Sn-Se-Sn	84.993(11)	N-Fe-N	73.96(8)-153.07(8)
N–Fe–Se	87.95(5)-172.86(6)	Se–Fe–Se	93.97(1)
		3	
Sn–Se	2.468(2)-2.559(1)	Mn–Se	2.608(1)-2.742(2)
Mn–N	2.236(3)-2.247(3)	Se–Sn–Se	95.52(4)-118.46(3)
Sn-Se-Sn	84.48(4)	N-Mn-N	74.22(10)
N-Mn-Se	91.36(8)-162.86(6)	Se-Mn-Se	92.85(5)-102.34(3)
		4	
Sn–Se	2.454(1)-2.574(1)	Mn–Se	2.682(1)
Mn–N	2.278(3)-2.375(3)	Se–Sn–Se	93.83(2)-118.81(2)
Sn-Se-Sn	86.17(2)-97.93(3)	N-Mn-N	71.69(8)-145.37(13)
N–Mn–Se	91.37(5)-161.02(5)	Se-Mn-Se	104.45(3)
		5	
Sn–Se	2.515(1)-2.798(1)	Fe–N	1.970(3)-1.977(3)
Se–Sn–Se	86.98(1)-176.09(2)	Sn-Se-Sn	85.64(1)-96.02(2)
N–Fe–N	83.13(11)-173.22(10)		

Figure S2. (a) View of three kinds of face-to-face $\pi \cdots \pi$ stacking interactions in **1** (shown in blue, green, and red dashed lines, respectively). (b) View of a 3-D supramolecular network of **1** along the *a* axis showing C–H…Se, N–H…Se and N–H…N hydrogen bonds (black dashed lines) and face-to-face $\pi \cdots \pi$ stacking interactions. Hydrogen atoms are omitted for clarity.

Figure S3. View of surrounding of a $(Sn_2Se_6)^{4-}$ anion in **1**, showing the hydrogen bonds between the co-template and the $(Sn_2Se_6)^{4-}$ anion (black dashed lines).

D–H···A	D-H (Å)	$H \cdots A(Å)$	$D \cdots A(Å)$	∠(DHA) (°)
N1-H1C…Se3	0.89	2.61	3.471(3)	164
N1–H1A…Se1 ^a	0.89	2.61	3.451(3)	159
$N1-H1B\cdots N11^{b}$	0.89	2.23	3.083(3)	160
$N1-H1B\cdots N12^{b}$	0.89	2.36	2.978(4)	127
N2-H2B…N21	0.89	2.12	2.937(5)	152
N2-H2BN22	0.89	2.61	3.270(5)	132
N2-H2C…N31	0.89	2.17	2.883(5)	137
N2-H2C…N32	0.89	2.36	3.156(5)	148
C36–H36A…Se1 ^c	0.93	2.93	3.826(4)	163

 Table S2. Selected Hydrogen Bonds Data for 1.

Symmetry codes: a 2-x, 1-y, 2-z; b x, -1+y, z; c 2-x, 2-y, 1-z.

Figure S4. ORTEP drawing of **2b** with 30% thermal ellipsoids and hydrogen atoms being omitted for clarity. Symmetry code: A (1-x, 2-y, 1-z).

Figure S5. (a) View of a chain structure of **2a** assembled by the face-to-face $\pi \cdots \pi$ stacking interactions (red dashed lines). (b) Polyhedral representation of a 2-D extended layer structure

of **2a** showing hydrogen bonds (black dashed lines) and $\pi \cdots \pi$ stacking interactions. (3) 3-D packing diagram of **2a**. Purple octahedron: (MnSe₂N₄); green tetrahedron: (SnSe₄).

D–H…A	D-H (Å)	$H \cdots A (\mathring{A})$	D…A (Å)	∠(DHA) (°)
C13-H10C…Se1 ^a	0.93	2.95	3.675(4)	136

 Table S3. Selected Hydrogen Bonds Data for 2a.

Symmetry code: a 1+x, y, z.

Figure S6. (a) Polyhedral view of the 3-D supramolecular framework of **2b** along the *c* axis assembled by the face-to-face $\pi \cdots \pi$ stacking interactions (red dashed lines). (b) Polyhedral view of a layer structure of **2b** assembled by the intermolecular C–H…Se hydrogen bonds (black dashed lines). Purple octahedron: (MnSe₂N₄); green tetrahedron: (SnSe₄).

Figure S7. View of the surroundings of a neutral { $[TM(phen)_2]_2(\mu_2-Sn_2Se_6)$ } molecule (where the (MnSe₂N₄) and (SnSe₄) units are shown as black polyhedra) in **2a** (TM = Mn, (a)) and **2b** (TM = Fe, (b)), showing C-H…Se hydrogen bonds and face-to-face $\pi \cdots \pi$ stacking interactions.

Figure S8. View of the face-to-face $\pi \cdots \pi$ stacking interactions in **2b** (red dashed lines).

D–H…A	D-H (Å)	$H \cdots A(Å)$	$D \cdots A(Å)$	∠(DHA) (°)
C13–H13A…Se2 ^a	0.93	2.93	3.666(3)	137
C23–H23A…Se2 ^b	0.93	2.89	3.759(3)	157

Table S4. Selected Hydrogen Bonds Data for 2b.

Symmetry codes: a 3/2-x,-1/2+y,3/2-z; b x,-1+y,z.

Figure S9. (a) Polyhedral representation of a 2-D extended layer structure of **3** showing $\pi \cdots \pi$ stacking interactions (red dashed lines). (b) Polyhedral view of the 3-D supramolecular framework of **3** along the *a* axis showing hydrogen bonds (black dashed lines) and $\pi \cdots \pi$ stacking interactions. Purple octahedron: (MnSe₃N₂); green tetrahedron: (SnSe₄). Hydrogen atoms are omitted for clarity.

D–H…A	D-H (Å)	$H \cdots A(Å)$	D…A (Å)	\angle (DHA) (°)
C3–H3A…Se2 ^a	0.93	2.92	3.691(4)	141

 Table S5. Selected Hydrogen Bonds Data for 3.

C1–H1A…Se3 ^b	0.93	3.20	3.693(4)	115	
-------------------------	------	------	----------	-----	--

Symmetry code: a 1+x, y, 1+z; b 1-x, 1-y, 2-z.

Figure S10. (a) Polyhedral representation of a 2-D extended layer structure of **4** showing $\pi \cdot \cdot \pi$ stacking interactions (red dashed lines). (b) Polyhedral view of the 3-D supramolecular framework of **4** along the *b* axis showing hydrogen bonds (black dashed lines) and $\pi \cdot \cdot \pi$ stacking interactions. Purple octahedron: (MnSe₂N₄); green tetrahedron: (SnSe₄). Hydrogen atoms are omitted for clarity.

 Table S6. Selected Hydrogen Bonds Data for 4.

D–H···A	D-H (Å)	$H \cdots A (\mathring{A})$	$D \cdots A(Å)$	∠(DHA) (°)
C19–H19A…Se3 ^a	0.93	3.03	3.779(4)	139

Symmetry code: a 3/2-x, 1/2+y, 3/2-z.

Figure S11. (a) Polyhedral representation of a ${}^{2}_{\infty}(\text{Sn}_{3}\text{Se}_{7}^{2-})$ layer structure of **5** with lattice water molecules residing in the honeycomb-like hole. (b) View of the 2-D extended layer structure of the $[\text{Fe}(\text{phen})_{3}]^{2+}$ complex cations assembled by face-to face $\pi \cdots \pi$ stacking interactions (red dashed lines). (c) Polyhedral view of the 3-D supramolecular framework of **5** along the *a* axis. Green polyhedron: (SnSe₅). Hydrogen atoms are omitted for clarity.

Figure S12. Topological view of the 2-D supramolecular $[Fe(phen)_3]_n^{2n+}$ layer of **5** with the $[Fe(phen)_3]^{2+}$ complex cation as a 3-connected node, and the configuration of the Fe complexes (Λ or Δ) labeled on the nodes.

 Table S7. Selected Hydrogen Bonds Data for 5.

D–H…A	D-H (Å)	$H \cdots A(Å)$	D…A (Å)	∠(DHA) (°)
C9–H9A…Se1	0.93	2.97	3.716(4)	138

Figure S13. IR spectra of 1–5.

In the IR spectra of 1–5 (Figure S13), the relatively weak bands in the region of $3081-3034 \text{ cm}^{-1}$ are attributed to the C–H vibrations of the aromatic ring hydrogen atoms, v(=C-H). The bands of ring vibrations of the phen ligand (v(C=C) and v(C=N)) are observed at 1631–1415 cm⁻¹. Region 776–720 cm⁻¹ is attributed to $\delta(C-H)$, due to out of plane motion of hydrogen atoms of heterocyclic rings. For 1, the IR bands at 2728 and 2564 cm⁻¹ correspond to the –CH₃ stretching and –NH₃⁺ twisting vibrations, respectively. The occurrence of these resonance signals confirms the presence of mono-protonated methylamine molecules in 1. The broad bands in the range of 3446–3315 cm⁻¹ for 1 and 2b–4 are assigned to the stretching of trace water since the measurements were conducted in air, while the broad brand for 2a and 5 is simultaneously ascribed to the trace water in air and its lattice water molecules.

Figure S14. Solid-state photoluminescence spectrum of pure phen ligand measured at room temperature.

Figure S15. TGA curves of 1, 2a and 3–5.

The thermal stabilities of **1**, **2a**, and **3–5** were examined by thermogravimetric analyses (TGA) in a N₂ atmosphere from 30 to 700 °C with the TGA curves shown in Figure S15. The TGA curve of **1** shows that compound **1** is stable up to 114 °C. A total weight loss of 8.4% in the temperature range 114–223 °C is attributed to the removal of four methylamine (calcd: 6.5%) and two H₂S (3.6%) molecules per formula and the weight loss occurred in the temperature range 223–700 °C is consistent with the removal of the phen molecules. TGA for **2a** revealed a small weight loss of 1.9% between 84 and 169 °C, which corresponds to the removal of one lattice water molecule per formula (calcd: 1.1%). Further two-step weight losses from 169 to 508 °C with a significant weight loss of 44.6% is in agreement with the release of four phen molecules per formula (calcd: 45.7%). From the shape of the curve of **3**, it can be seen that the phen ligands are lost in one main step, and the observed weight loss of 30.4% in the temperature range of 262–501 °C agrees well with the calculated value of 30.5%. Compound **4** is more stable than **1**, **2a**, and **3**, and displays a clean one step loss with the

decomposition temperature at 353 °C. The corresponding weight loss of 33.2% to 505 °C is comparable with the complete loss of the phen molecules (calcd: 34.4%). For **5**, a small weight change of 0.7% in the temperature range of 59–203 °C is attributed to the removal of the lattice water molecules (calcd: 1.5%), and the following weight loss of 39.7% before 683 °C is comparable with the complete loss of the phen molecules (calcd: 35.4%).