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Sample synthesis: 

 

All the chemicals and solvents were obtained from Sigma Aldrich and used without any 

further purification. 4-heptyl-1,2,4-triazole (figure S1) was prepared from 1-

heptylamine, thriethyl orthoformate and N-formylhydrazine by a procedure described pre-

viously.
1
 Iron(II) tosylate hexahydrate was synthesized by reaction between metallic 

iron and p-toluenesulphonic acid. The solution of the complex [Fe(hptrz)
3
](OTs)

2
 was 

prepared by mixing iron(II) tosylate hexahydrate (30 mg, 0.06 mmol, 1 equiv.) and p-

toluenesulphonic acid monohydrate (4 mg, 0.02 mmol) in MeOH (150 µl) and 4-heptyl-

1,2,4-triazole (60 mg, 0.36 mmol, 6 equiv.) in CHCl
3
 (4 ml). The substrates were pre-

pared by depositing 5 nm of titanium and 45 nm of gold on clean glass wafers (BK7 from 

Schott, 0.5 mm thickness) by means of a Veeco 770 thermal evaporator apparatus at a 

pressure of 5 × 10
—7
 mbar. The complex solution (100 µl) was then spin-coated on this 

substrate (speed: 4000 rpm, time: 30 s). 

a) b)

 

Figure S1. (a) Expected chain structure for the triazole family complexes.
2
 (b) hptrz = 

4-heptyl-1,2,4-triazole. 
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Figure S2. Absorption spectra of the [Fe(hptrz)
3
](OTs)

2
 complex in the HS and LS states 

 

Calculation of the refractive index and the HS fraction from the SPR data: 

 

To determine the complex refractive index and the thickness of the different constitu-

ents of our multilayer sample, a fitting with a theoretical curve using the Fresnel 

equations is required.
3
 These equations allow calculating reflected and transmitted 

light intensity for multi-layers as depicted on Figure S3.  
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Figure S3. Multi-layer representation for reflectivity and transmission analysis. 

 

Each layer is characterized by a matrix M
k
, displayed in equation (2), which allows 

calculating the matrix M of the multi-layer system as shown in equation (1). 
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The amplitude reflection coefficient for p-polarized light (r
p
) is calculated with 

these matrix elements as:  
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Then, the intensity reflection coefficient for p-polarized light (R
p
) can be obtained 

by: 

 

2

pp rR =            (4) 

 

Figure S4 shows an example for fitting the experimental data by this method. The fit-

ting allows also a more complete characterization of the sample: the thickness of tita-

nium, gold and [Fe(hptrz)
3
](OTs)

2
 can be extracted additionally to the [Fe(hptrz)

3
](OTs)

2
 

refractive index.  
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Figure S4. Fitting of an experimental curve at T = 293 K and λ = 660nm by a theoretical 

curve calculated with the Fresnel equations. The theoretical curve is obtained for the 

multi-layer glass/ Ti (22.5 nm)/ Au (40.5 nm)/ [Fe(hptrz)
3
](OTs)

2
 (29.8 nm) with a com-

plex refractive index of n* = 1.585 + 0.0055 i  for [Fe(hptrz)
3
](OTs)

2
. 

 

Using this approach one can convert the θ
SPR
 = f(T) data into n = f(T) curves. To sim-

plify this conversion two approximations were made: (1) Thickness and refractive index 

variations of titanium, gold and glass are neglected. (2) The variation of the thick-

ness of the [Fe(hptrz)
3
](OTs)

2
 film is supposed to be negligible as well. The first ap-

proximation is well supported by the experimental data shown in the manuscript (Figure 

1). The latter approximation is, however, rather crude because even very small thick-

ness variations (less than 1 %) are detectable and the spin state change may involve a 

change of the crystal unit cell parameters up to 5-10 %.
2,4
 Therefore the calculated 

refractive index values (Figure S5(a)) should be considered as “effective values ”. To 

calculate the accurate values of n the sample thickness should be determined at each 

temperature by AFM. One should also note that the refractive index of this material is 
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anisotropic, but the thin films are not oriented (i.e. not single crystalline) there-

fore what we determine from the SPR experiments is a mean value for n. 

 

In the last step, we have determined the high spin and low spin fractions (γ
HS
 + γ

LS
 = 1) 

from the refractive index values as a function of the temperature using the Maxwell-

Garnett equation:  

 

mi

mi

i

meff

meff
q

εε
εε

εε

εε

22 +

−
=

+

−
         (5) 

 

where ε=n  

 

This equation allows calculating an effective refractive index of a material with impu-

rities (ε
eff
), if the volume fraction of the impurities (q

i
) and the refraction indexes 

of the material (ε
m
) and impurities (ε

i
) are known. This relation works only if the size 

of the impurities is lower than the wavelength of the light.
5 
In our case we consider 

that the whole material is in the LS state at 293 K and in the HS state at 340 K. Dur-

ing the warming the HS state will be considered as an impurity. This approximation 

leads to equation (6), from which we obtain equation (7) for the HS fraction. Figure 

S5(b) displays the calculated γ
HS
(T) curve. Strictly speaking this approach is valid 

only in the case of homogeneous phase transformations. Further work will be necessary 

using extended Maxwell-Garnett theories in order to take into account the phase separa-

tion.
6 
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Figure S5. (a) Thermal variation of the refractive index for a glass/ Ti (5 nm)/ Au (45 

nm)/ [Fe(hptrz)
3
](OTs)

2
 (30 nm) multi-layer calculated by fitting the experimental SPR 

data shown in figure 3. (b) Conversion of the refractive index into HS fraction using 

the Maxwell-Garnett equation. 

 

 

Effect of the film thickness change on the SPR signal: 

 

The plasmon resonance angle localization depends both on the thickness and on the re-

fractive index of the SCO material. With increasing temperature the refractive index n 

will decrease, while the sample thickness h will increase. This leads to opposing ef-

fects on the plasmon resonance angle. Figure 3(b) of the article shows that the SPR 

angle decreases with the temperature in the whole measurement range. This means that 

the refractive index variation has a more important influence than the thickness 

change. Using the empirical Gladstone-Dale relationship
7
 (eq. 8) we can explain this 

observation as follows: 

 

V

m
rn +=1            (8) 

where, n: refractive index, r: constant, m: mass, V: volume. From this one can deduce 

that: 

 

n

n

V

V

−
∆

=
∆

1
           (9) 

 

If the volume variation of the film is isotropic, the variation of the thickness h can 

be linked to the variation of the volume by: 
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With these approximations and if n > 1.5 we obtain: 
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The refractive index of [Fe(hptrz)
3
](OTs)

2
 is higher than 1.5, hence we can conclude 

that the relative variation of the refractive index will be more important than that of 

the thickness – in agreement with the experimental observations. 

 

Temperature effect on the refractive index: 

 

The refractive index variation with the temperature is mainly due to a thermal expan-

sion of the material (far from the spin transition temperature). Thermal variation of 
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refractive index can be analyzed with the Debye model in the quasi-harmonic approxima-

tion.
8
 We can consider the phonon dispersion relations of the low and high temperature 

phases:  
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where i indicates the HS or LS phase, ω
i
 is the angular momentum, k

i
 the corresponding 

wave vector, c the velocity of light, n
i
 the refractive index and V

i
 the volume of the 

phase i. 

 

We can write the total derivative of the refractive index as: 
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In the quasi-harmonic approximation, the angular momentum ω
i
 is supposed to be volume 

dependent through the Grüneisen parameter γ
i
: 
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where B
i
, αi and C

v,i
 stand for the bulk modulus, the thermal expansion coefficient and the spe-

cific heat of the solid, respectively.  From the precedent equations a relationship 

between the refractive index n
i
 and the temperature can be easily established: 
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where n
0
 and T

0
 correspond to the reference refractive index and temperature, respec-

tively, chosen far from the transition temperature. Since the thermal expansion coefficient is small 

and constant over our experimental temperature range, a Taylor expansion of ni(T) can be performed and we finally 

obtain: 
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This equation reproduces the experimentally observed linear relationship between the 

temperature and the optical properties (n or θ
SPR
). Equation (16) shows also that the 

slope of the θ
SPR
(T) curves in the HS and LS phases (far from the spin state change) are 

different – in agreement with the experimental findings. It would be very useful to 

determine the thermal expansion coefficient of [Fe(hptrz)
3
](OTs)

2
 in the HS and LS 
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phases (for example using X-ray diffraction) in order to quantitatively connect it to 

the SPR shift. 
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