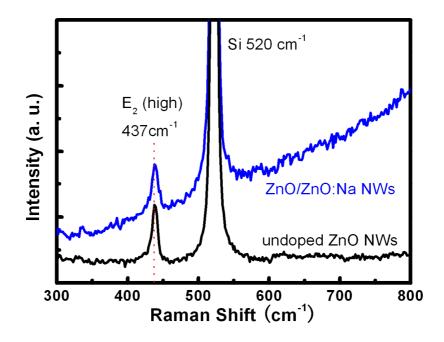
Supporting Information

Single-crystalline sodium-doped p-type ZnO and ZnMgO nanowires via combination of thin-film and nano techniques

Haiping He^{#,†,‡}, Shisheng Lin^{#,‡,§}, Guodong Yuan[†], Liqiang Zhang[‡], Wenfeng Zhang[†], Linbao Luo[†], Yulin Cao[†], Zhizhen Ye^{‡,*}, Shuit Tong Lee^{†,*}


These authors contribute equally to this work.

[†] Center of Super-Diamond and Advanced Film (COSDAF) and Department of Physics and Materials Science, City University of Hongkong, Hong Kong SAR (China)

[‡] State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

§ Department of Optical Engineering, Zhejiang University, Hangzhou 310027, P. R. China

* To whom correspondence should be addressed, E-mail: apannale@cityu.edu.hk (S. T. Lee); yezz@zju.edu.cn (Z. Z. Ye)

Fig. S1 Raman backscattering spectra of the undoped ZnO NWs and ZnO/ZnO:Na core-shell NWs array. Both NWs show the E_2 (high) mode of ZnO at 437 cm⁻¹, which agrees well with the reported value of bulk ZnO. The results indicate that the NWs are almost stress-free. In addition, the defect-sensitive A₁(LO) mode at 575 cm⁻¹ is not observed, indicating low defect density in both samples.

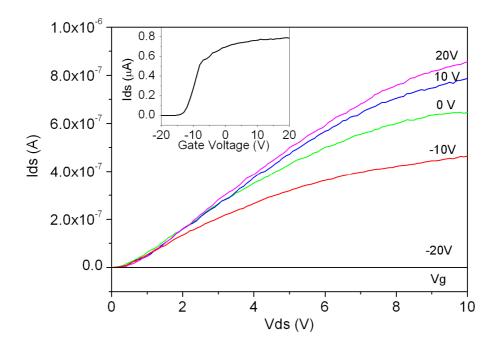
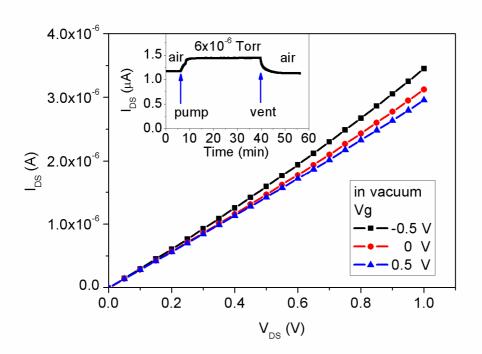



Fig. S2 Output and transfer characteristics (inset) of undoped ZnO NW-FET, showing *n*-type conductivity.

Fig. S3 Output characteristics of annealed ZnO/ZnO:Na core-shell NW-FET measured in high vacuum. The nanowire remain *p*-type conductivity. Inset shows the I_{DS} measured in air and vacuum. The current shows slight change in vacuum, indicating low density surface states in the nanowires.