Determining a Synthetic Approach to Pierisformoside C

Sharon Chow, Christoph Kreß, Nanna Albæk, Carsten Jessen, Craig M. Williams*

School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia

Supporting Information

Table of Contents
S1

Materials and Methods S2

Synthesis of Compounds 21-23, 16, 17, 28, 27, 29, 33 - 35
S3
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra \quad S11

[^0]
Materials and Methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV300, AMX400 and/or DRX500 instruments using $\mathrm{CDCl}_{3}(99.8$ atom $\% \mathrm{D}$) as solvent. Coupling constants are given in Hz and chemical shifts are expressed as δ values in ppm . The residue solvent peaks were used as internal references ($\delta_{\mathrm{H}} 7.24 ; \delta_{\mathrm{C}}$ 77.0). High resolution ESI mass spectral data were obtained on a Finnigan MAT 900XL or Bruker micrOTOF ${ }_{Q}$ spectrometer. Column chromatography was undertaken on silica gel (flash silica gel 230-400 mesh), with distilled solvents. Anhydrous solvents were prepared according to Perin and Armarego, 'Purification of laboratory solvents', $3^{\text {rd }}$ Ed. Fine chemicals were purchased from the Aldrich Chem. Co. Petroleum spirit constitutes the fraction boiling between $40-60^{\circ} \mathrm{C}$. Melting points were measured on a Buchi Dr Tottoli apparatus and are uncorrected.

3-Hydroxy-2,2-dimethylcyclopentyl benzoate 21

To 2,2-dimethyl-1,3-cyclopentadione $13(0.50 \mathrm{~g}, 4.0 \mathrm{mmol})$ in tetrahydrofuran (10 mL) was added $\mathrm{NaBH}_{4}(0.18 \mathrm{~g}, 4.8 \mathrm{mmol})$ in water (1.5 mL). After stirring for 2.5 h water $(2.5 \mathrm{~mL})$ was added and the solution was acidified to $\mathrm{pH} \sim 2$ with hydrochloric acid (2 M solution). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, dried (MgSO_{4}), and evaporated. 2,2-Dimethyl-1,3-cyclopentadiol was purified by column chromatography (EtOAc/petroleum spirit, 3:7), with the cis-isomer eluting first and then the trans-isomer in a 1:1 ratio. Both diols were obtained as a white solid ($0.47 \mathrm{~g}, 90 \%$). cis-diol: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 0.65(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.73(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.45(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J 4.1$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 13.3,24.3,28.4,43.4,76.5$. M.p. $128-130^{\circ} \mathrm{C}$. trans-diol: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 0.78(\mathrm{~s}, 6 \mathrm{H}), 1.26-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.98(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.64(\mathrm{~m}, 2 \mathrm{H})$, 4.31 (bd, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 20.3,29.7,44.8,77.5$. M.p. $88-89^{\circ} \mathrm{C}$.

Cis-2,2-dimethylcyclopentane-1,3-diol ${ }^{1}(0.10 \mathrm{~g}, 0.77 \mathrm{mmol})$ was dissolved in dry anhydrous pyridine (2 mL) and stirred under an argon atmosphere. Benzoyl chloride ($89 \mu \mathrm{~L}, 0.77 \mathrm{mmol}$) was added dropwise. After 3 h of stirring at room temperature the reaction mixture was diluted with water (10 mL), followed by extraction with dichloromethane ($3 \times 5 \mathrm{~mL}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column chromatography (EtOAc /petroleum spirit 1:3) to afford the desired alcohol $21(0.12 \mathrm{~g}, 64 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.28(\mathrm{~m}, 2 \mathrm{H}), 3.80$ $(\mathrm{dd}, J 6.7,5.0,1 \mathrm{H}), 5.02(\mathrm{dd}, J 6.9,4.6,1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.0,25.1,28.1,30.8,45.7,79.7,82.0,128.4$ (2C), 129.5 (2C), 130.1, 132.9, 171.1. HRESIMS $m / z 257.1148$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$, 257.1154).

2,2-Dimethyl-3-oxocyclopentyl benzoate 22

[^1]3-Hydroxy-2,2-dimethylcyclopentyl benzoate $21(0.12 \mathrm{~g}, 0.49 \mathrm{mmol})$ was dissolved in anhydrous dichloromethane (2 mL) under an argon atmosphere and a few pre-dried $4 \AA$ molecular sieves was added. N-Methyl morpholine N-oxide $(0.097 \mathrm{~g}, 0.83 \mathrm{mmol})$ and tetrapropylammonium perruthenate (TPAP, $7.4 \mathrm{mg}, 4 \mathrm{~mol} \%$) were then added. The mixture was stirred for 80 min and then eluted (EtOAc) through silica. The residue was purified by column chromatography (EtOAc /petroleum spirit 1:4) affording the title ketone $22(0.11 \mathrm{~g}, 95 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.51(\mathrm{~m}, 3 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.53$ $(\mathrm{m}, 1 \mathrm{H}), 7.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\oint 17.7,22.5,25.4,34.0,49.3,80.2,128.4$ (2C), 129.5 (2C), 129.9, 133.1, 165.7, 219.5. HRESIMS m/z 255.0992 (calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}, 255.0997$).

4-(Ethoxycarbonyl)-2,2-dimethyl-3-(trifluoromethylsulfonyloxy)cyclopent-3-enyl benzoate 23

Mander's reaction. 2,2-Dimethyl-3-oxocyclopentyl benzoate $22(0.10 \mathrm{~g}, 0.43 \mathrm{mmol})$ was dissolved in anhydrous THF (2 mL) under an argon atmosphere. To this was added hexamethylphosphoramide (HMPA, $0.12 \mathrm{~mL}, 0.69 \mathrm{mmol}$) followed by cooling to $-78{ }^{\circ} \mathrm{C}$. Diisopropylamine ($0.072 \mathrm{~mL}, 0.51 \mathrm{mmol}$) was added to THF (1 mL) under an argon atmosphere. Upon cooling to $0{ }^{\circ} \mathrm{C},{ }^{\mathrm{n}} \mathrm{BuLi}$ solution (1.3 M in THF, 0.36 mL) was added and the solution was stirred for 10 min before addition to the above solution. After 1 h of stirring, ethyl cyanoformate $(0.047 \mathrm{~mL}, 0.47 \mathrm{mmol})$ was added and the reaction was allowed to warm to room temperature over 18 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and the residue was purified by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petroleum spirit 1:1) to afford a diastereomeric mixture of 4-(ethoxycarbonyl)-2,2-dimethyl-3-oxocyclopentyl benzoate ($95 \mathrm{mg}, 73 \%$) as a pale yellow oil, which was used in the next reaction directly.
Triflate formation. 4-(Ethoxycarbonyl)-2,2-dimethyl-3-oxocyclopentyl benzoate ($95 \mathrm{mg}, 0.31$ mmol) was dissolved in THF (2 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. Diisopropylamine ($0.052 \mathrm{~mL}, 0.37$ mmol) was added to THF (1 mL) under an argon atmosphere and cooled to $0{ }^{\circ} \mathrm{C},{ }^{\mathrm{n}} \mathrm{BuLi}$ solution (1.3 M in THF, 0.26 mL) was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min before adding to the above solution. After 1 h of stirring, trifluoromethanesulfonic anhydride ($0.11 \mathrm{~mL}, 0.63 \mathrm{mmol}$) was added and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, then diluted with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The
combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and the residue was purified by column chromatography ($\mathrm{EtOAc} /$ petroleum spirit 1:1) to give triflate $23(0.13 \mathrm{~g}, 92 \%$) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J 7.2,3 \mathrm{H}), 2.75(\mathrm{dd}, J 16.9,3.8$, 1 H), 3.23 (dd, J 17.0, 6.9, 1H), 4.28 (q, J 7.4, 2H), 5.26 (dd, J 6.7, 3.8, 1H), 7.44 (m, 2H), 7.58 (m, $1 \mathrm{H}), 8.02(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,18.1,23.4,34.3,48.6,61.5,76.9,118.5(\mathrm{q}$, $J_{C-F} 320.4$), 118.7, 128.5 (2C), 129.5, 129.6 (2C), 133.4, 156.3, 162.1, 165.8. HRESIMS m / z 459.0696 (calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{SNa}, 459.0701$).

Methyl 1-(2-bromoallyl)-5-oxocyclohex-3-enecarboxylate 16

Birch reduction. Following the combined methods of Marinovic and Smith, ${ }^{2}$ to liquid ammonia $(180 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of 3-methoxybenzoic acid $15(5.41 \mathrm{~g}, 35.5 \mathrm{mmol})$ in anhydrous THF (35 mL) followed by lithium metal $(0.74 \mathrm{~g}, 0.11 \mathrm{mmol}$) until the blue colour persisted. The blue solution was stirred for 1 h before rapid dropwise addition of 2,3-dibromopropene ($5.14 \mathrm{~mL}, 49.8 \mathrm{mmol}$). After a further 1 h at $-78^{\circ} \mathrm{C}$ solid ammonium chloride $(9.50 \mathrm{~g}, 178 \mathrm{mmol})$ was added and the ammonia was allowed to evaporate overnight. Hydrochloric acid ($3 \mathrm{~N}, 180 \mathrm{~mL}$) was added to the residue and refluxed for 20 min . On cooling the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$. The combined organic layers were extracted with NaHCO_{3} solution $(10 \%, 2 \times 90 \mathrm{~mL})$. The aqueous phase was acidified with conc. hydrochloric acid to pH 2 and then reextracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 60 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Upon solvent evaporation, 1-(2-bromoprop-2-en-1-yl)-5-oxocyclohex-3-ene-1-carboxylic acid ($6.9 \mathrm{~g}, 76 \%$) was obtained and used in the next step without further purification.

Esterification. 1-(2-Bromoallyl)-5-oxocyclohex-3-enecarboxylic acid ($6.5 \mathrm{~g}, 25 \mathrm{mmol}$) was suspended in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and diazomethane in $\mathrm{Et}_{2} \mathrm{O}$ was added in portions at $5^{\circ} \mathrm{C}$, until all solid was dissolved. The reaction was allowed to warm to room temperature. After 2 h the ethereal solution was washed with saturated NaHCO_{3} solution (75 mL), dried $\left(\mathrm{NaSO}_{4}\right)$, filtrated and concentrated under vacuo. The residue was subjected to column chromatography (EtOAc /petroleum spirit, 1:1), to give compound 18 ($6.2 \mathrm{~g}, 90 \%$) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.47 (d, J 16.5, 1H), 2.49 (ddd, J 18.4, 3.4, 2.8, 1H), 2.82 (d, J 14.6, 1H), 2.89 (ddd, J 18.5, 5.2, 1.6, 1H), 2.90 (d, J 14.6, 1H), 2.94 (dd, J 16.4, 1.4, 1H), 3.67 (s, 3H), 5.56 (s, 2H), 6.02 (m, 1H), 6.85
${ }^{2}$ a) Marinovic, N.N.; Ramanathan, H. Tetrahedron Lett., 1983, 24, 1871; b) Smith, A.B., III; Richmond, R.E. J. Am. Chem. Soc. 1983, 105, 575.
(ddd, J 10.1, $5.0,3.4,1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.9,44.8,48.3,48.5,52.6,121.9,126.6$, 129.8, 146.7, 174.2, 196.3.

Methyl 6-methylene-3-oxobicyclo[3.2.1]octane-1-carboxylate 17

Following the method of Marinovic, ${ }^{3}$ methyl 1-(2-bromoallyl)-5-oxocyclohex-3-enecarboxylate 16 $(0.10 \mathrm{~g}, 0.36 \mathrm{mmol})$, tributyltinhydride (freshly distilled, $0.10 \mathrm{~mL}, 0.39 \mathrm{mmol}$) and recrystallised VAZO- 64^{\circledR} (AIBN, $3 \mathrm{mg}, 0.02 \mathrm{mmol}$) were dissolved in anhydrous toluene (2 mL) under an argon atmosphere. The solution was refluxed for 3 h . On cooling the solvent was evaporated and the oily residue was filtered through a pad of potassium fluoride/silica gel (containing $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$) with dichloromethane. The residue was further purified by column chromatography ($\mathrm{EtOAc} / \mathrm{petroleum}$ spirit, 1:3) to give the desired bicycle $17(58 \mathrm{mg}, 83 \%)$ as a colourless oil containing a trace of inseparable [3.3.1]-bicycle. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.99(\mathrm{dd}, J 11.9,2.5,1 \mathrm{H}), 2.27$ (dp, J $11.9,2.7,1 \mathrm{H}), 2.37-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.59(\mathrm{dt}, J 16.8,2.5,1 \mathrm{H}), 2.69(\mathrm{dd}, J 16.8,2.8,1 \mathrm{H}), 2.81(\mathrm{dt}, J$ $17.2,2.8,1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.91(\mathrm{bs}, 1 \mathrm{H}), 4.99(\mathrm{bt}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.8,41.3,41.8,49.7,50.3,50.6,52.2,108.9,150.4,174.9,208.3$.

6-Methylene-3-oxobicyclo[3.2.1]octane-1-carbaldehyde 28

Reduction. Methyl 6-methylene-3-oxobicyclo[3.2.1]octane-1-carboxylate 17 ($2.00 \mathrm{~g}, 10.3 \mathrm{mmol}$) was dissolved in anhydrous THF (100 mL) under an argon atmosphere. Lithium aluminium hydride $\left(\mathrm{LiAlH}_{4}, 1.17 \mathrm{~g}, 30.9 \mathrm{mmol}\right)$ was added portion wise at $0^{\circ} \mathrm{C}$, and the suspension was stirred at room temperature for 4 h . The reaction was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and the mixture was stirred for 30 min . The white solid was filtered off and rinsed with dichloromethane. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuo. After flash chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, 1-(hydroxymethyl)-6-methylenebicyclo[3.2.1]octan-3-ol (1.3 g, 75\%) was obtained as two column separable diastereomers, both in the form of a colourless oil. First eluted diol: ${ }^{1}$ H NMR (400 MHz ,

[^2]$\left.\mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{dd}, J 10.9,2.7,1 \mathrm{H}), 1.35(\mathrm{t}, J 6.0,1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, J 14.1,4.7,1.7$, $1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dt}, J 3.5,1.0,1 \mathrm{H}), 2.19(\mathrm{~d}, J 7.5,1 \mathrm{H}), 2.23(\mathrm{ddd}, J 16.6,4.7,2.5,1 \mathrm{H}), 2.61$ $(\mathrm{m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J 5.6,2.1,2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.5,40.7,41.5,41.6,43.0,44.6,67.1,70.6,106.7$, 155.9. Second eluted diol: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{ddt}, J 12.0,6.0$, $2.0,1 \mathrm{H}), 2.03$ (dddt, $J 11.9,6.2,4.6,1.8,1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{bt}, J 5.3,1 \mathrm{H}), 3.50(\mathrm{~d}, J 5.8,2 \mathrm{H})$, $3.96(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{tt}, J 2.6,1.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.4,40.7$, $42.5,43.26,43.31,46.0,66.4,70.1,105.1,153.9$. HRESIMS $m / z 191.1043$ (calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}$, 191.1048).

Oxidation. 1-(Hydroxymethyl)-6-methylidenebicyclo[3.2.1]octan-3-ol ($0.26 \mathrm{~g}, 1.6 \mathrm{mmol}$) was dissolved in anhydrous dichloromethane (100 mL) under an argon atmosphere and a few pre-dried $4 \AA$ molecular sieves were added. N-Methyl morpholine N-oxide ($0.40 \mathrm{~g}, 3.4 \mathrm{mmol}$) and tetrapropylammonium perruthenate ($52 \mathrm{mg}, 0.15 \mathrm{mmol}$) were added. The mixture was stirred at room temperature for 3 h and then eluted with EtOAc through a plug of silica. The solvent was evaporated and residue was purified by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ petroleum spirit $\left.1: 8\right)$ to afford the title aldehyde $28(0.86 \mathrm{~g}, 68 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.83(\mathrm{dd}$, $J 11.7,2.7,1 \mathrm{H}), 2.19$ (dddd, $J 11.7,5.4,2.9,2.1,1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 2.53$ (dd, J 16.6, $3.8,1 \mathrm{H}), 2.68(\mathrm{dd}, J 16.6,2.9,1 \mathrm{H}), 2.76(\mathrm{dq}, J 16.9,2.9,1 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 5.09$ (ddd, J 3.0, 2.1, 0.9, 1H), $9.56(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.65,38.69,41.9,46.9$, 50.9, 55.2, 109.7, 149.9, 201.4, 208.1. HRESIMS m/z 219.0992 (calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}+\mathrm{CH}_{3} \mathrm{OH}$, 219.0997).

1-Ethynyl-6-methylenebicyclo[3.2.1]octan-3-one 27

6-Methylene-3-oxobicyclo[3.2.1]octane-1-carbaldehyde $28(0.10 \mathrm{~g}, 0.58 \mathrm{mmol})$ was dissolved in anhydrous 1% dichloromethane in methanol (2 mL). To this solution was added diethyl (1-diazo-2-oxopropyl)phosphonate $20(0.25 \mathrm{~g}, 1.1 \mathrm{mmol})$ and potassium carbonate ($0.25 \mathrm{~g}, 1.8$ $\mathrm{mmol})$. The mixture was stirred at room temperature for 2 h . The solid was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and solvent was then evaporated. The residue was purified by column chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ petroleum spirit 1:9) affording the title acetylene $27\left(69 \mathrm{mg}, 71 \%\right.$) as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.07(\mathrm{dd}, J 11.9,2.4,1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 2.37$ (dddd, J
$15.9,3.5,2.0,1.2,1 \mathrm{H}), 2.47(\mathrm{dd}, J 16.2,3.7,1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.66$ (ddd, $J 17.2$, $5.3,2.7,1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{bs}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.7,41.5$, $44.0,44.9,50.5,53.7,69.7,87.1,{ }^{4} 109.0,150.5,207.9$. HRESIMS $\mathrm{m} / \mathrm{z} 183.0780$ (calcd for $\left.\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ONa}, 183.0786\right)$.

Acetylene 29

Following the method of Jacobi, ${ }^{5}$ to a dry flask was placed $\mathrm{CuI}(5 \mathrm{mg}, 10 \mu \mathrm{~mol})$ and tetrakis(triphenylphosphine)palladium(0) ($15 \mathrm{mg}, 13 \mu \mathrm{~mol}$) under an argon atmosphere. Compound $23(110 \mathrm{mg}, 0.25 \mathrm{mmol})$ in anhydrous THF $(1 \mathrm{~mL})$ and anhydrous triethylamine ($0.10 \mathrm{~mL}, 0.75$ mmol) was added to the above mixture. After 10 min, 1-ethynyl-6-methylidenebicyclo[3.2.1]octan-3-one $27(56 \mathrm{mg}, 0.35 \mathrm{mmol})$ in anhydrous THF (0.5 mL) was added, and the solution darkened after stirring for a minute. The reaction was stirred for 5 h at room temperature, followed by diluting with brine and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuo. The residue was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{petroleum}$ spirit 1:3) affording the title product 29 ($81 \mathrm{mg}, 72 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J 7.1,3 \mathrm{H}), 2.15(\mathrm{dd}, J 11.9,2.4,1 \mathrm{H}), 2.30(\mathrm{dtt}, J 11.9,5.1,2.1$, $1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J 16.0,3.6,1 \mathrm{H}), 2.60-2.77(\mathrm{~m}, 5 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J 18.1,6.6$, 1H), 4.21 (q, J 7.1, 2H), 4.93 (bs, 1H), 5.00 (bt, J 2.2, 1H), 5.24 (dd, J 6.7, 4.0, 1H), 7.41 (m, 2H), $7.54(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.4,20.0,25.2,37.4,39.0,41.6,44.0$, $45.0,50.6,52.1,53.5,60.6,76.4,79.4,105.1,109.1,128.4$ (2C), 129.6 (2C), 130.1, 132.5, 133.1, 141.3, 150.4, 164.1, 166.1, 207.7. HRESIMS $m / z \quad 469.1991$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}, 469.1991$).

[^3]
Epoxide 33

mCPBA $(77 \%, 4.0 \mathrm{mg}, 16 \mu \mathrm{~mol})$ and $\mathrm{NaHCO}_{3}(10 \mathrm{mg}, 100 \mu \mathrm{~mol})$ were added respectively to the acetylene $29(5.7 \mathrm{mg}, 13 \mu \mathrm{~mol})$ in dichloromethane $(0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The suspension was stirred at the same temperature for 1 h , and then slowly warmed to room temperature. After another 4.5 h of stirring, the reaction was poured into a $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (10\%) and extracted with dichloromethane $(3 \times 2 \mathrm{~mL})$. The combined organic extracts were washed with saturated NaHCO_{3} solution and brine. Upon solvent evaporation, the residue was purified by flash chromatography (EtOAc/petroleum spirit 1:3) to give 3 fractions, with the first being the recovered starting material 29 ($1.2 \mathrm{mg}, 21 \%$), followed by the major epoxide $33(2.3 \mathrm{mg}, 39 \%)$ and the last as a mixture of the major and minor epoxides (1.0 mg , major : minor $\approx 2: 3,17 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, J 0.7,3 \mathrm{H}), 1.21(\mathrm{~d}$, $J 1.0,3 \mathrm{H}), 1.30(\mathrm{t}, J 7.2,3 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J 12.0,1.6,1 \mathrm{H}), 2.25(\mathrm{dd}, J 15.0,1.5,1 \mathrm{H})$, $2.31(\mathrm{dd}, J 14.9,1.7,1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J 16.6,4.1,1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 3 \mathrm{H}), 2.79$ (d, J4.4, 1H), 2.85 (d, J 4.4, 1H), 3.21 (dd, $J 18.2,6.6,1 H$), 4.22, (q, J 7.2, 2H), 5.27 (dd, J 6.7, 3.8, $1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.55,(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.4,20.0,25.2$, $37.4,39.5,41.8,42.8,44.2,46.1,50.1,52.1,54.3,60.6,65.5,76.5,79.4,104.2,128.4$ (2C), 129.6 (2C), 130.1, 132.9, 133.1, 141.0, 164.1, 166.1, 206.9. HRESIMS $m / z 485.1935$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}, 485.1940$).

34 and 35

To a flask with epoxide 33 (diastereomeric at the benzoate centre, $2.2 \mathrm{mg}, 4.8 \mu \mathrm{~mol}$) and Lindlar catalyst (5% Pd loading, 1 mg) in THF (1.2 mL) was charged with hydrogen. The suspension was stirred at room temperature for 1 h . The reaction was filtered through a pad of celite. After drying thoroughly under vacuum, anhydrous THF (2 mL) was added to the crude cis-alkene under an argon
atmosphere. NaOMe in methanol ($2 \mathrm{M}, 10 \mu \mathrm{~L}$) was then added dropwise. A pale yellow colour resulted from the addition and the colour slowly intensified over time. The reaction was allowed to stir for 10 h , and then poured into saturated NaHCO_{3} solution. The aqueous phase was separated and re-extracted with EtOAc $(3 \times 2 \mathrm{~mL})$. The combined organic layers were washed with brine, dried and concentrated under vacuo. Partial separation of the diastereomers of $\mathbf{3 4}$ was achievable by column chromatography (EtOAc/petroleum spirit 1:3). The first and last fractions were mostly a single diastereomer and the middle as a mixture of both (0.7 mg in total, 47%). The doubly cyclised material $35(0.3 \mathrm{mg}, 20 \%)$ was eluted last from the column. First eluted diastereomer of 34 : ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~d}, ~ J 6.7,1 \mathrm{H}), 1.76(\mathrm{~d}, ~ J 13.6,1 \mathrm{H}), 1.97$ (dd, J 11.7, 2.6, 1H), 2.05 (dt, J 5.8, 1.6, 1H), 2.25 (ddd, J 11.7, 6.1, 2.6, 1H), 2.41 (dt, J 19.2, 2.2, 1H), 2.46 (dd, J 13.5, 2.5, 1H), 2.68 (ddt, J 16.6, 7.7, 1.1, 1H), 2.72 (dd, J 19.2, 5.5, 1H), 2.81 (d, J $4.6,1 \mathrm{H}), 2.83(\mathrm{~d}, J 4.6,1 \mathrm{H}), 2.89(\mathrm{dd}, J 16.6,7.1,1 \mathrm{H}), 3.97(\mathrm{q}, J 7.2,1 \mathrm{H}), 5.83(\mathrm{~d}, J 11.2,1 \mathrm{H}), 5.91$ (dd, $J 11.2,1.7,1 \mathrm{H}), 16.67(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.5,24.9,38.0,38.7,42.4,44.6$, $45.3,45.5,49.8,51.0,66.8,78.5,118.2,123.6,132.1,140.2,155.5,174.7,194.6$. HRESIMS m / z 337.1410 (calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}, 337.1416$). Second eluted diastereomer of 34 : ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{~d}, ~ J 5.3,1 \mathrm{H}), 1.77(\mathrm{~d}, ~ J 13.5,1 \mathrm{H}), 1.97(\mathrm{dd}, J 11.7,2.6,1 \mathrm{H}), 2.05(\mathrm{~m}$, 1H), 2.26 (ddd, $J 11.5,6.0,2.6,1 H$), 2.41 (dt, J 19.1, 2.2, 1H), 2.51 (dd, J 17.5, 2.7, 1H), 2.52 (d, J 13.6, 2.8, 1H), 2.72 (dd, J 19.1, 5.5, 1H), 2.83 (s, 2H), 3.19 (m, 1H), 3.97 (dt, J 5.4, 2.7, 1H), 5.84 $(\mathrm{d}, J 11.0,1 \mathrm{H}), 5.93(\mathrm{dd}, J 11.2,1.4,1 \mathrm{H}), 16.62(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.4,24.5$, $38.0,39.8,42.4,44.6,45.2,45.6,51.0,51.5,66.8,77.8,118.3,123.4,132.8,139.9,155.1,175.0$, 194.5. 35: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02$ (s, 6 H), $1.40(\mathrm{bs}, 1 \mathrm{H}), 1.44(\mathrm{bs}, 1 \mathrm{H}), 1.69$ (dd, J 7.7, $2.8,1 \mathrm{H}$), 1.76 (d, J 12.3, 1H), 1.78 (dd, $J 12.1,2.7,1 \mathrm{H}$), 1.88 (m, 2H), 1.99 (d, J 7.8, 1H), 2.50 (dd, $J 17.4,5.2,1 \mathrm{H}), 2.98$ (ddd, J 17.5, 6.5, 5.0, 1H), 3.75 (d, J 12.2, 1H), 3.80 (d, J 12.2, 1H), 3.86 (m, $1 \mathrm{H}), 5.45(\mathrm{~d}, J 12.2,1 \mathrm{H}), 5.52(\mathrm{~d}, J 12.2,1 \mathrm{H}), 17.1(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.8$, 20.7, 24.5, 31.0 (2C), 38.5, 43.6, 44.7, 45.5, 50.8, 63.7, 77.2, 111.1, 118.9, 130.6, 141.2, 151.9, 169.9, 195.8. ${ }^{6}$ HRESIMS $m / z 337.1410$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}, 337.1416$).

[^4]CKR-5

$\stackrel{\stackrel{\rightharpoonup}{+}}{+}$			$\stackrel{8}{\circ}$	
$\stackrel{\text { I }}{7}$			$\stackrel{\circ}{\square}$	¢ ¢ ${ }_{\text {¢ }}$
-	\V/	HK		

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

S 18

(10)

Firstly eluted diastereomer
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]: * Author to whom correspondence should be addressed (c.williams3@mailbox.uq.edu.au).

[^1]: ${ }^{1}$ Herein we report the mono-protection of the cis-diol 13. On other occasions, a mixture of the cisand trans-diols 13 was protected and then oxidised directly, under the same conditions, to give the same benzoate 22 .

[^2]: ${ }^{3}$ Marinovic, N.N.; Ramanathan, H. Tetrahedron Lett., 1983, 24, 1871.

[^3]: ${ }^{4}$ This ${ }^{13} \mathrm{C}$ NMR data was extracted from 2D NMR HMBC experiment.
 5 Jacobi, P. A.; DeSimone, R. W.; Ghosh, I.,; Guo, J.; Leung, S. H.; Pippin, D. J. Org. Chem., 2000, 65, 8478.

[^4]: ${ }^{6}$ This ${ }^{13} \mathrm{C}$ NMR data was extracted from 2D NMR HMBC experiment.

