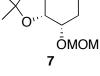
Supporting Information

Enantioselective Total Synthesis of the Potent Anti-HIV Nucleoside EFdA

Masayuki Kageyama,[†] Tomohiro Nagasawa,[†] Mayumi Yoshida,[†] Hiroshi Ohrui,[‡] and Shigefumi Kuwahara^{*,†}

[†] Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
[‡] Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan

skuwahar@biochem.tohoku.ac.jp

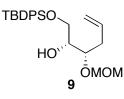

Contents

General Information	S2
Experimental Procedures and Characterization Data	S2–S7
Diagnostic NOE correlations in the anomers of 14 and 15	S8
¹ H and ¹³ C NMR Spectra	S9–S16

General Information

IR spectra were recorded by an FT/IR spectrometer using an ATR (ZnSe) attachment. ¹H NMR spectra were recorded at 400 or 600 MHz and ¹³C NMR spectra were recorded at 100 MHz or 150 MHz with TMS as an internal standard in CDCl₃ unless otherwise stated. Optical rotation values were measured as solutions in CHCl₃ unless otherwise stated. High-resolution MS data were obtained by operating in the EI or FAB mode. Column chromatography was performed using 70–230 mesh silica gel. Solvents for reactions were distilled prior to use: THF from Na and benzophenone; MeOH from Mg and I₂; CH₂Cl₂, DMF and CH₃CN from CaH₂. All air- or moisture-sensitive reactions were conducted under a nitrogen atmosphere.

(R)-4-[(S)-1-Methoxymethoxy-3-butenyl]-2,2-dimethyl-1,3-dioxolane (7).



Compound 7 was obtained by diastereoselective allylation of **6** followed by MOMprotection and chromatographic purification according to the procedure reported in Ref. 8. $[\alpha]^{21}_{D}$ +23.5 (*c* 1.10, CHCl₃); IR: ν_{max} 3080 (w), 1643 (w), 1213 (s), 1153 (s);

¹H NMR (400 MHz): δ 1.35 (3H, s), 1.41 (3H, s), 2.28–2.42 (2H, m), 3.38 (3H, s), 3.74 (1H, ddd, J = 5.5, 5.5, 5.5, 5.5 Hz), 3.89 (1H, dd, J = 8.0, 6.4 Hz), 4.04 (1H, dd, J = 8.0, 6.4 Hz), 4.10 (1H, ddd, J = 6.4, 6.4, 5.5 Hz), 4.70 (1H, d, J = 7.2 Hz), 4.72 (1H, d, J = 7.2 Hz), 5.10 (1H, dm, J = 10.0 Hz), 5.13 (1H, dm, J = 17.1 Hz), 5.87 (1H, dddd, J = 17.1, 10.0, 7.1, 7.1 Hz); ¹³C NMR (100 MHz): δ 25.3, 26.4, 36.0, 55.7, 66.0, 76.8, 77.1, 96.3, 109.0, 117.6, 134.1; HRMS (FAB): m/z calcd for C₁₁H₂₁O₄, 217.1440; found, 217.1444 ([M+H]⁺).

HO HO HO (2R,3S)-3-Methoxymethoxy-5-hexene-1,2-diol (8). To a stirred solution of 7 (3.87 g, 17.9 mmol) in MeOH/H₂O (100:1, 181.8 mL) was added PPTS (227 mg, 0.903 mmol) at room temperature. After 1.5 h, the mixture was stirred at 55 °C for 1.5 h, and at 60 °C 8

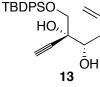
for an additional 2 h. The mixture was quenched with solid NaHCO₃ and concentrated in vacuo. The residue was diluted with ether and the resulting ethereal solution was dried (MgSO₄) and concentrated in vacuo. The residue was purified by silica gel column chromatography (CHCl₃/MeOH = 20:1) to give 2.62 g (83%) of **8**. $[\alpha]_{D}^{23}$ +60.9 (*c* 1.13, CHCl₃); IR: v_{max} 3400 (br s), 3077 (w), 1641 (w), 1098 (s); ¹H NMR (400 MHz): δ 2.30–2.45 (3H, m), 3.04 (1H, d, *J* = 7.4 Hz), 3.42 (3H, s), 3.62–3.82 (4H, m), 4.66 (1H, d, *J* = 6.6 Hz), 4.70 (1H, d, *J* = 6.6 Hz), 5.10 (1H, dm, *J* = 10.2 Hz), 5.14 (1H, dm, *J* = 17.2 Hz), 5.83 (1H, dddd, *J* = 17.2, 10.2, 7.0, 7.0 Hz); ¹³C NMR (100 MHz): δ 36.1, 55.9, 62.9, 72.7, 81.0, 97.3, 117.8, 134.1; HRMS (FAB): *m/z* calcd for C₈H₁₇O₄, 177.1127; found, 177.1133 ([M+H]⁺).

(2R,3S)-1-(tert-Butyldiphenylsilyloxy)-3-methoxymethoxy-5-hexen-2-ol (9). To

a stirred solution of **8** (4.03 g, 22.9 mmol) in DMF (110 mL) were successively added imidazole (3.89 g, 57.2 mmol) and TBDPSCl (6.2 mL, 23.8 mmol) at room temperature under a nitrogen atmosphere. After 2 h, the mixture was diluted with

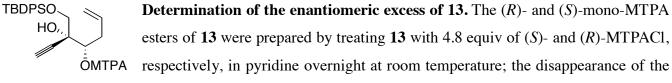
brine and extracted with ether. The extract was successively washed with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc = 8:1) to give 9.12 g (96%) of **9**. $[\alpha]^{22}_{D}$ +8.9 (*c* 1.18, CHCl₃); IR: ν_{max} 3459 (w), 1641 (w), 1105 (vs), 1033 (vs), 770 (vs); ¹H NMR (400 MHz): δ 1.07 (9H, s), 2.26-2.42 (2H, m), 2.70 (1H, d, *J* = 4.3 Hz), 3.26 (3H, s), 3.62-3.82 (4H, m), 4.59 (1H, d, *J* = 6.9 Hz), 4.62 (1H, d, *J* = 6.9 Hz), 5.05 (1H, dm, *J* = 10.1 Hz), 5.08 (1H, dm, *J* = 17.2 Hz), 5.83 (1H, dddd, *J* = 17.2, 10.1, 7.1, 7.1 Hz), 7.34–7.48 (6H, m), 7.60–7.70 (4H, m); ¹³C NMR (100 MHz): δ 19.2, 26.8 (3C), 35.3, 55.7, 64.6, 72.7, 78.6, 96.5, 117.3, 127.8 (4C), 129.8 (2C), 133.05, 133.08, 134.6, 135.5 (2C), 135.6 (2C); HRMS (FAB): *m/z* calcd for C₂₄H₃₅O₄Si, 415.2305; found, 415.2310 ([M+H]⁺).

(3R,4S)-3-[(tert-Butyldiphenylsilyloxy)methyl]-4-methoxymethoxy-6-hepten-1-

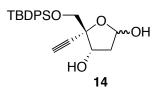


TBDPSO

yn-3-ol (12). To a stirred solution of 9 (4.42 g, 10.4 mmol) in CH₂Cl₂ (100 mL)
M were successively added solid NaHCO₃ (4.38 g, 52.2 mmol) and DMP (5.74 g, 13.5 mmol) at room temperature under a nitrogen atmosphere. After 25 min,

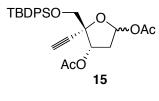

additional NaHCO₃ (5.35 g, 63.6 mmol) and DMP (1.37 g, 3.23 mmol) were added, and the resulting mixture was stirred for 20 min. The mixture was quenched with a mixture of satd NaHCO₃ aq, satd Na₂S₂O₃ aq, and water (1:1:1), and extracted with CH₂Cl₂. The extract was washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc = 9:1) to give **10**, which was then taken up in THF (88 mL). A solution of bromo(trimethylsilylethynyl)magnesium was prepared by adding EtMgBr (1.0 M in THF, 14.0 mL, 14.0 mmol) to a solution of ethynyltrimethylsilane (2.00 mL, 1.36 mmol) in THF (14 mL) at 0 °C and subsequently stirring the resulting mixture at room temperature for 1 h. To the Grignard reagent was added the solution of **10** in THF obtained above at -78 °C under a nitrogen atmosphere, and the mixture was gradually warmed to 0 °C over 3 h and stirred for an additional 13 h. To the mixture was stirred at reflux for 2 h. Since the desilylation was sluggish in the THF/MeOH solvent system, the solvents (THF and MeOH) was evaporated, and the residue was diluted with MeOH (100 mL) and mixed with additional K₂CO₃ (2.71 g, 19.6 mmol). The mixture was stirred at room temperature for 20 min, quenched with satd NH₄Cl aq, and extracted with EtOAc. The extract was washed with brine, dried

(MgSO₄), and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to give 4.17 g (91%) of **12**. $[\alpha]_{D}^{23}$ -5.0 (*c* 1.04, CHCl₃); IR: v_{max} 3462 (w), 3302 (m), 1641 (w), 1040 (vs), 701 (vs); ¹H NMR (400 MHz): δ 1.09 (9H, s), 2.43 (1H, dddm, *J* = 14.7, 8.8, 7.7 Hz), 2.49 (1H, s), 2.69 (1H, ddddd, *J* = 14.7, 6.5, 3.3, 1.6, 1.6), 3.22 (3H, s), 3.32 (1H, s), 3.73 (1H, dd, *J* = 8.8, 3.3 Hz), 3.80 (1H, d, *J* = 9.8 Hz), 3.85 (1H, d, *J* = 9.8 Hz), 4.62 (1H, d, *J* = 6.8 Hz), 4.69 (1H, d, *J* = 6.8 Hz), 5.05 (1H, dm, *J* = 10.2 Hz), 5.13 (1H, dddd, *J* = 17.0, 1.7, 1.7, 1.6 Hz), 5.91 (1H, dddd, *J* = 17.0, 10.2, 7.7, 6.5 Hz), 7.34–7.48 (6H, m), 7.64-7.76 (4H, m); ¹³C NMR (100 MHz): δ 19.3, 26.8 (3C), 35.7, 56.0, 67.8, 73.4, 73.7, 80.9, 83.7, 97.6, 117.1, 127.76 (2C), 127.78 (2C), 129.9 (2C), 132.6, 132.7, 135.5, 135.6 (2C), 135.7 (2C); HRMS (FAB): *m*/*z* calcd for C₂₆H₃₅O₄Si, 439.2304; found, 439.2302 ([M+H]⁺)



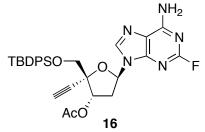
(3*R*,4*S*)-3-[(*tert*-Butyldiphenylsilyloxy)methyl]-6-hepten-1-yne-3,4-diol (13). To a stirred solution of 12 (1.23 g, 2.80 mmol) in CH_2Cl_2 (28 mL) were successively added ZnBr₂ (805 mg, 3.58 mmol) and 1-dodecanethiol (1.3 mL, 5.43 mmol) at room

temperature. After 30 min, the mixture was quenched with satd NaHCO₃ aq and extracted with CH₂Cl₂. The extract was washed with brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to give 1.06 g (96%) of **13**. $[\alpha]^{24}_{D}$ –2.4 (*c* 1.05, CHCl₃); IR: v_{max} 3512 (m), 3303 (m), 1643 (w), 1111 (vs), 700 (vs); ¹H NMR (400 MHz): δ 1.09 (9H, s), 2.17 (1H, d, *J* = 5.7 Hz), 2.23 (1H, ddddd, *J* = 14.5, 10.3, 7.8, 1.0, 1.0 Hz), 2.48 (1H, s), 2.65 (1H, ddddd, *J* = 14.5, 6.2, 2.5, 1.3, 1.3 Hz), 3.30 (1H, s), 3.77 (1H, ddd, *J* = 10.3, 5.7, 2.5 Hz), 3.85 (1H, d, *J* = 10.0 Hz), 3.92 (1H, d, *J* = 10.0 Hz), 5.14 (1H, dm, *J* = 10.2 Hz), 5.17 (1H, dm, *J* = 17.2 Hz), 5.90 (1H, dddd, *J* = 17.2, 10.2, 7.8, 6.2 Hz), 7.36–7.48 (6H, m), 7.64–7.74 (4H, m); ¹³C NMR (100 MHz): δ 19.3, 26.8 (3C), 36.1, 67.7, 73.2, 73.7, 74.3, 82.9, 117.8, 127.8 (2C), 127.9 (2C), 130.00, 130.01, 132.4, 132.5, 135.0, 135.56 (2C), 135.63 (2C); HRMS (FAB): *m/z* calcd for C₂₄H₃₁O₃Si, 395.2043; found, 395.2045 ([M+H]⁺).

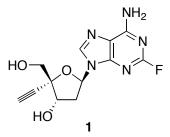

starting material **13** was checked by TLC. The TBDPSO-bearing methylene protons of the (*R*)-MTPA ester were observed as a singlet at δ 3.65 (2H, s) in ¹H NMR (600 MHz, CDCl₃), while those of the (*S*)-MTPA ester were detected at δ 3.73 (1H, d, *J* = 10.3 Hz) and δ 3.75 (1H, d, *J* = 10.3 Hz). Comparison of the two spectra indicated that the enantiomeric excess of **13** is more than 95%.

(2R/S,4S,5R)-5-[(tert-Butyldiphenylsilyloxy)methyl]-5-ethynyltetrahydro-

furan-2,4-diol (14). Ozone was bubbled into a solution of 13 (3.21 g, 8.13 mmol) in $CH_2Cl_2/MeOH$ (4:1, 100 mL) at -78 °C for 25 min. After removal of excess ozone by a stream of O₂ (for about 10 min), NaHCO₃ (3.33 g, 39.6

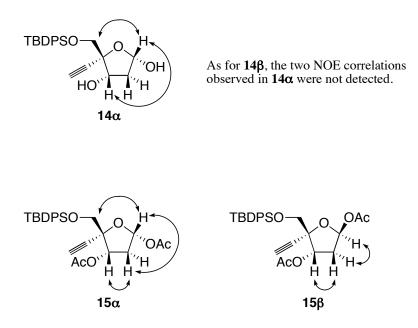

mmol) and Me₂S (6.0 mL, 81.7 mmol) were successively added, and the resulting mizture was gradually warmed to room temperature. The mixture was filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc = 2:1–3:2) to give 2.71 g (84%) of **14** as an anomeric mixture (α-anomer/β-anomer = 2.8:1). $[α]^{24}{}_{D}$ +5.7 (*c* 0.99, CHCl₃); IR: v_{max} 3411(br s), 3291 (s), 1084 (vs), 701 (vs); ¹H NMR (400 MHz): δ 1.05 (0.74 × 9H, s), 1.09 (0.26 × 9H, s), 2.10 (0.26H, d, *J* = 6.9 Hz), 2.16 (0.74H, ddd, *J* = 13.6, 1.4, 0.8 Hz), 2.16–2.24 (0.26H, m), 2.31 (0.26H, ddd, *J* = 13.5, 6.5, 2.2 Hz), 2.36 (0.74H, ddd, *J* = 13.6, 5.3, 5.3 Hz), 2.65 (0.26H, s), 2.70 (0.74H, s), 2.80 (0.74H, d, *J* = 5.5 Hz), 3.00 (0.26H, d, *J* = 6.1 Hz), 3.57 (0.74H, d, *J* = 7.2 Hz), 3.63 (0.74H, d, *J* = 10.6 Hz), 3.76 (0.74H, d, *J* = 10.6 Hz), 3.81 (0.26H, d, *J* = 10.5 Hz), 3.85 (0.26H, d, *J* = 10.5Hz), 4.42 (0.74H, ddd, *J* = 6.1, 5.5, 5.2 Hz), 7.34–7.50 (6H, m), 7.60–7.74 (4H, m); ¹³C NMR (100 MHz): δ 19.2, 26.7/26.8 (3C), 41.2/41.8, 67.1/67.5, 72.3/74.0, 77.7, 80.7, 84.3/85.9, 97.9/100.2, 127.8/127.9 (4C), 129.88/129.92/129.96/130.03 (2C), 132.61/132.64 (2C), 135.6/135.7 (4C); HRMS (FAB): *m*/z calcd for C₂₃H₂₈O₄SiNa, 419.1655; found, 419.1656 ([M+Na]⁺).

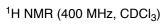
(2R,3S,5R/S)-5-Acetoxy-2-[(*tert*-butyldiphenylsilyloxy)methyl]-2-ethynyltetrahydrofuran-3-yl acetate (15). To a stirred solution of 14 (135 mg, 0.340 mmol) and DMAP (25.8 mg, 0.211 mmol) in CH₂Cl₂ (3.5 mL) were successively added Et₃N (210 µL, 1.51 mmol) and Ac₂O (130 µL, 1.38 mmol)

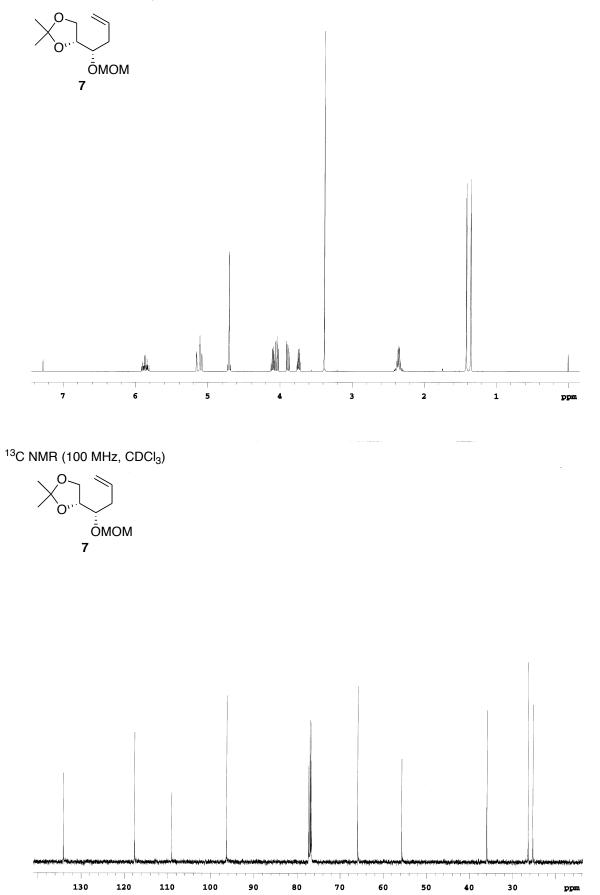

at room temperature. After 1.5 h, the mixture was quenched with satd NH₄Cl aq and extracted with CH₂Cl₂. The extract was washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc = 4:1) to give 153 mg (94%) of **15** as an anomeric mixture (α -anomer/ β -anomer = 1:1.4). [α]²⁴_D –11.4 (*c* 0.97, CHCl₃); IR: ν_{max} 3281 (w), 1744 (vs), 1227 (s), 702 (s); ¹H NMR (400 MHz): δ 1.05 (0.42 × 9H, s), 1.09 (0.58 × 9H, s), 1.86 (0.58 × 3H, s), 2.11 (0.42 × 3H, s), 2.12 (0.58 × 3H, s), 2.15 (0.42 × 3H, s), 2.24 (0.42H, dm, *J* = 14.5 Hz), 2.40–2.56 (0.58 × 2H, m), 2.51 (0.42H, s), 2.53 (0.58H, s), 2.70 (0.42H, ddd, *J* = 14.5, 7.8, 5.4 Hz), 3.82 (0.58H, d, *J* = 10.8 Hz), 3.83 (0.42H, d, *J* = 10.8 Hz), 3.86 (0.58H, d, *J* = 10.8Hz), 3.90 (0.42H, d, *J* = 10.8 Hz), 5.65 (0.42H, dd, *J* = 7.8, 1.6 Hz), 5.73 (0.58H, dd, *J* = 7.1, 7.0 Hz), 6.40–6.45 (1H, m), 7.34–7.48 (6H, m), 7.64–7.74 (4H, m); ¹³C NMR (100 MHz): δ 19.2/19.3, 21.0, 21.2/21.3, 26.68/26.71 (3C),

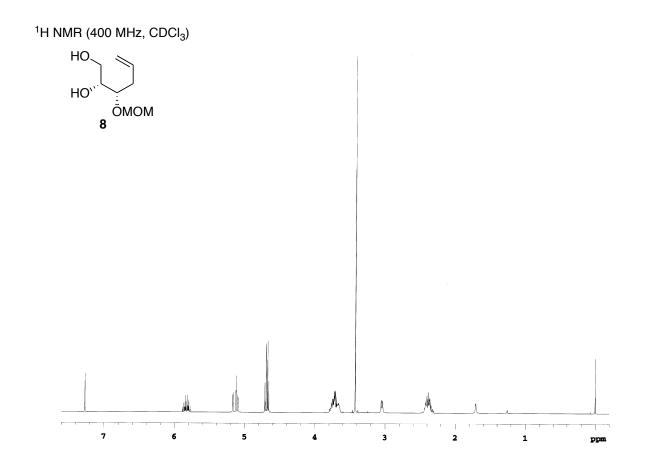
37.3/38.9, 66.5/67.9, 72.0/73.5, 76.40/76.43, 79.0/79.2, 84.1/85.9, 96.5/98.6, 127.72/127.76 (2C), 127.82/127.83 (2C), 129.7/129.8/129.9 (2C), 132.4/132.6, 132.7/132.9, 135.5 (2C), 135.6/135.7 (2C), 169.96/169.97, 170.35/170.38; HRMS (FAB): m/z calcd for $C_{27}H_{32}O_6SiNa$, 503.1866; found, 503.1864 ([M+Na]⁺).

(2R,3S,5R)-5-(6-Amino-2-fluoropurin-9-yl)-2-[(*tert*-butyldiphenyl-silyloxy)methyl]-2-ethynyltetrahydrofuran-3-yl acetate (16). To compound 3 (188 mg, 1.23 mmol) were added a solution of 16 (387 mg, 0.805 mmol) in CH₃CN (8.0 mL) and *N,O*-bis(trimethylsilyl)acetamide (1.10 mL, 4.50 mmol) at room temperature. The mixture was stirred at

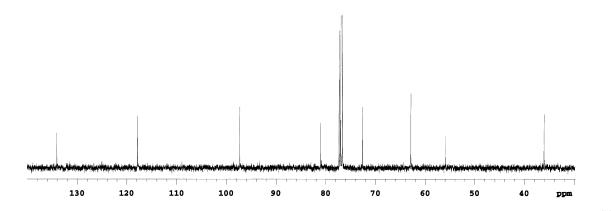

reflux for 2.5 h, and then cooled to 0 °C. To the mixture was added TMSOTf (0.300 mL, 1.66 mmol), and the resulting mixture was stirred at room temperature for 15 min and at reflux for an additional 17 h. The mixture was quenched with satd NaHCO₃ aq and filtered through a pad of Celite. The filtrate was diluted with water and extracted with CH₂Cl₂. The extract was washed with brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by silica gel column chromatography ($CHCl_3/MeOH =$ 100:1) to give 213 mg (46%) of 16 and 115 mg (25%) of the corresponding α -anomer. 16: mp: 182.6– 183.3 °C; $[\alpha]_{D}^{26}$ +24.3 (c 1.13, CHCl₃); IR: ν_{max} 1747 (m), 1635 (s), 1362 (s), 702 (vs); ¹H NMR (600 MHz, DMSO- d_6): δ 0.96 (9H, s), 2.13 (3H, s), 2.61 (1H, ddd, J = 14.0, 6.8, 4.7 Hz), 3.20 (1H, 6.8, 4.7 14.0, 6.8, 6.8 Hz), 3.74 (1H, s), 3.78 (1H, d, J = 10.6 Hz), 3.95 (1H, d, J = 10.6 Hz), 5.82 (1H, dd, J = 10.6 H 6.8, 4.7 Hz), 6.37 (1H, dd, J = 6.8, 6.8 Hz), 7.32-7.38 (4H, m), 7.42-7.48 (2H, m), 7.54-7.64 (4H, m), 7.78–7.85 (1H, br s), 7.85–8.04 (1H, br s), 8.27 (1H, s); ¹³C NMR (150 MHz): δ 19.1, 21.1, 26.7 (3C), 34.6, 66.7, 72.9, 79.6, 79.8, 83.0, 83.3, 118.0, 128.03 (2C), 128.05 (2C), 130.16, 130.18, 132.5, 132.7, 135.3 (2C), 135.4 (2C), 140.3, 150.5 (d, J_{CF} = 20.2 Hz), 157.9 (d, J_{CF} = 21.3 Hz), 158.7 (d, J_{CF} = 204.4 Hz), 169.6; HRMS (FAB): *m/z* calcd for C₃₀H₃₃FN₅ O₄Si, 574.2286; found, 574.2290 ([M+H]⁺). α-Anomer of **16**: mp: 221.0-221.7 °C; $[\alpha]_{D}^{25}$ +16.7 (*c* 1.03, CHCl₃); IR: v_{max} 3330 (w), 3276 (w), 1759 (m), 1372 (s), 700 (vs); ¹H NMR (600 MHz, DMSO- d_6): δ 1.05 (9H, s), 2.08 (3H, s), 2.81 (1H, ddd, J = 14.4, 3.8, 3.5 Hz), 3.05 (1H, ddd, J = 14.4, 7.3, 7.3 Hz), 3.75 (1H, d, J = 10.6 Hz), 3.77 (1H, s), 3.79 (1H, d, J= 10.6 Hz), 5.71 (1H, dd, J = 7.3, 3.5 Hz), 6.37 (1H, dd, J = 7.3, 3.8 Hz), 7.44–7.54 (6H, m), 7.66–7.74 (4H, m), 7.80–7.98 (2H, br m), 8.29 (1H, s); ¹³C NMR (150 MHz): δ 19.1, 21.1, 26.8 (3C), 36.6, 67.5, 73.3, 79.2, 80.5, 83.4, 84.8, 117.4, 128.26 (2C), 128.27 (2C), 130.3, 130.4, 132.3, 132.4, 135.4 (2C), 135.5 (2C), 139.1, 150.9 (d, J_{CF} = 20.2 Hz), 157.9 (d, J_{CF} = 21.3Hz), 159.0 (d, J_{CF} = 203.6 Hz), 169.5; HRMS (FAB): m/z calcd for C₃₀H₃₃FN₅ O₄Si, 574.2286; found, 574.2285 ([M+H]⁺).

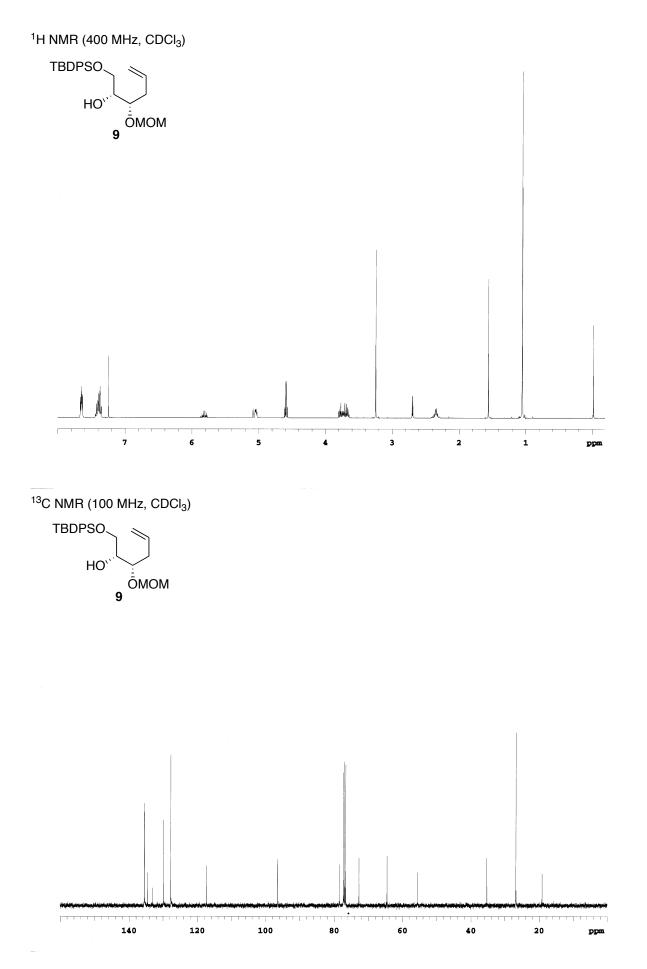


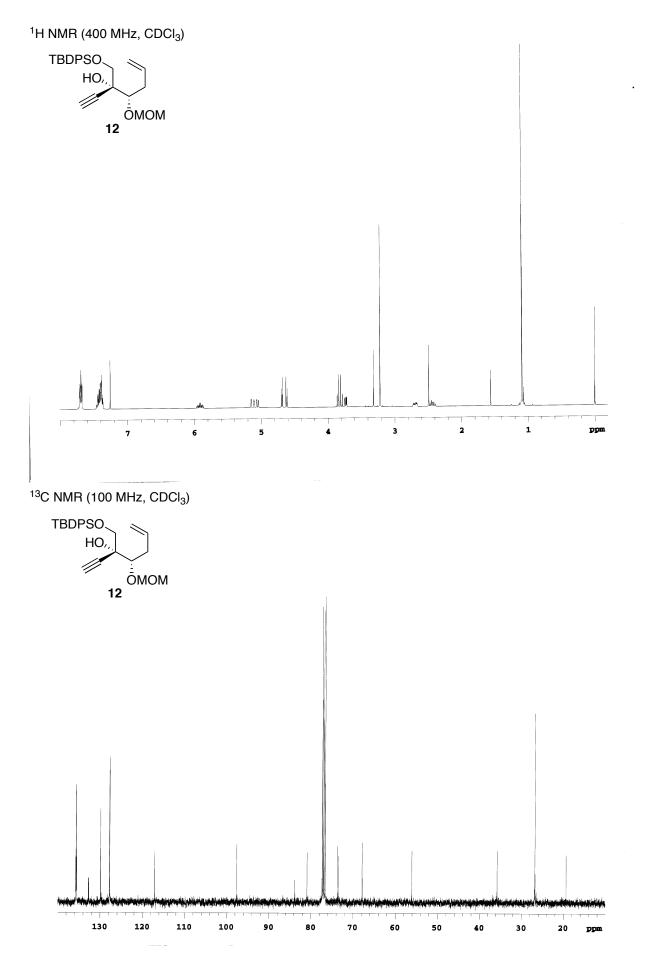

(2*R*,3*S*,5*R*)-5-(6-Amino-2-fluoropurin-9-yl)-2-ethynyl-2-(hydroxymethyl)tetrahydrofuran-3-ol (1). To a stirred solution of 16 (66.2 mg, 0.115 mmol) in MeOH/CH₂Cl₂ (2:1, 1.5 mL) was added NH₄F (85.1 mg, 2.30 mmol) at room temperature. After 16 h, MeOH (0.5 mL) was added, and the resulting mixture was stirred for an additional 27 h. To the mixture was added 10%

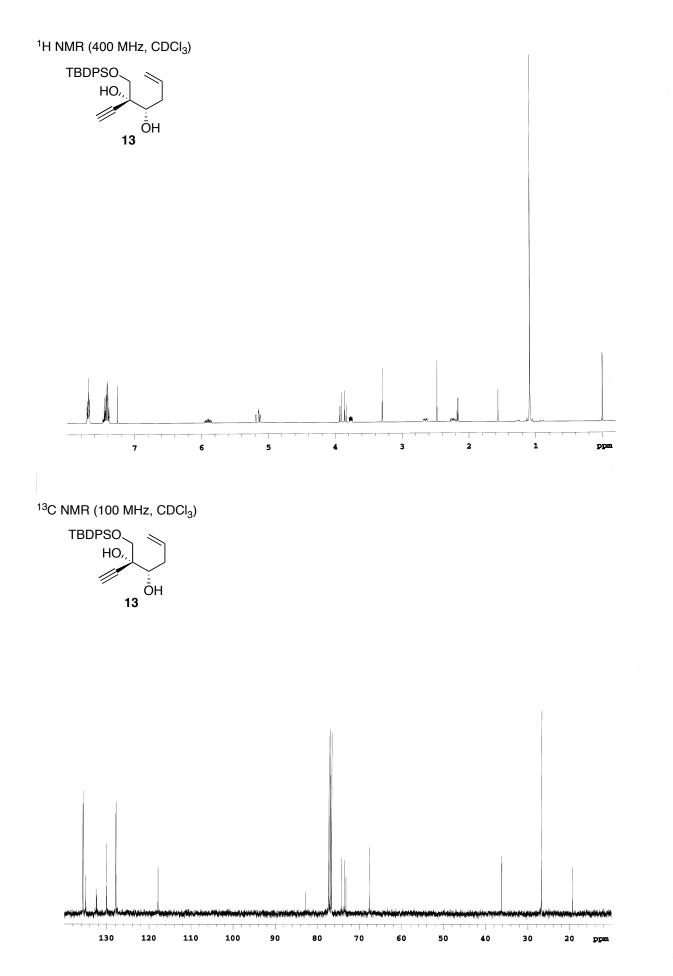

NaOH in MeOH (1.5 mL) to adjust the pH of the mixture to ca. 10. After 10 min, Dowex 50W×8 (200–400 mesh (H)) was added until the pH of the mixture reached ca. 4. To the resulting mixture was added CaCO₃ (259 mg, 2.59 mmol), and the mixture was stirred for 30 min. The mixture was filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (CHCl₃/MeOH = 10:1) to give 29.3 mg (87%) of **1**. Mp: 220.0–221.4 °C (dec.); $[\alpha]^{25}_{D}$ +12.4 (*c* 0.97, MeOH); IR: v_{max} 3315 (br m), 3179 (br m), 1690 (vs), 1356 (vs); ¹H NMR (600 MHz, DMSO-*d*₆): δ 2.43 (1H, ddd, *J* = 13.2, 7.3, 7.3 Hz), 2.70 (1H, ddd, *J* = 13.2, 6.8, 5.1 Hz), 3.52 (1H, s), 3.54 (1H, dd, *J* = 11.7, 6.4 Hz), 3.65 (1H, dd, *J* = 11.7, 5.0 Hz), 4.57 (1H, m), 5.32 (1H, m), 5.60 (1H, m), 6.24 (1H, dd, *J* = 7.2, 5.1 Hz), 7.82 (1H, br s), 7.92 (1H, br s), 8.31 (1H, s); ¹³C NMR (150 MHz): δ 38.3, 64.4, 70.3, 79.2, 81.7, 82.2, 85.4, 117.6, 140.0, 150.4 (d, *J*_{CF} = 20.7 Hz), 157.8 (d, *J*_{CF} = 21.2 Hz), 158.8 (d, *J*_{CF} = 203.4 Hz); HRMS (FAB): *m/z* calcd for C₁₂H₁₃FN₅ O₃, 294.1002; found, 294.1000 ([M+H]⁺).

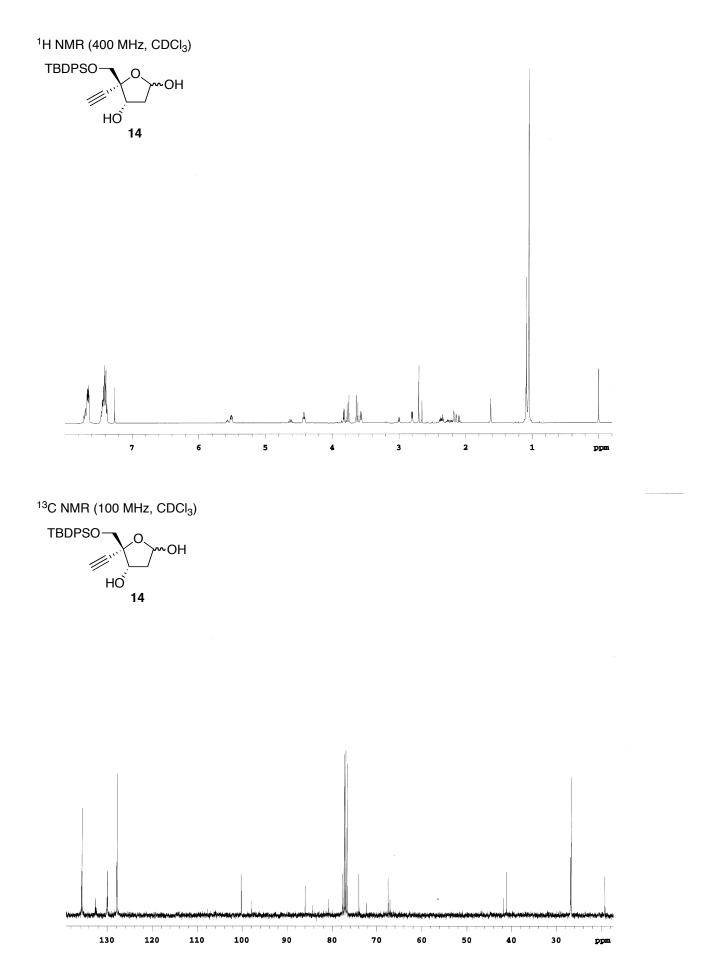
Diagnostic NOE correlations in the anomers of 14 and 15.

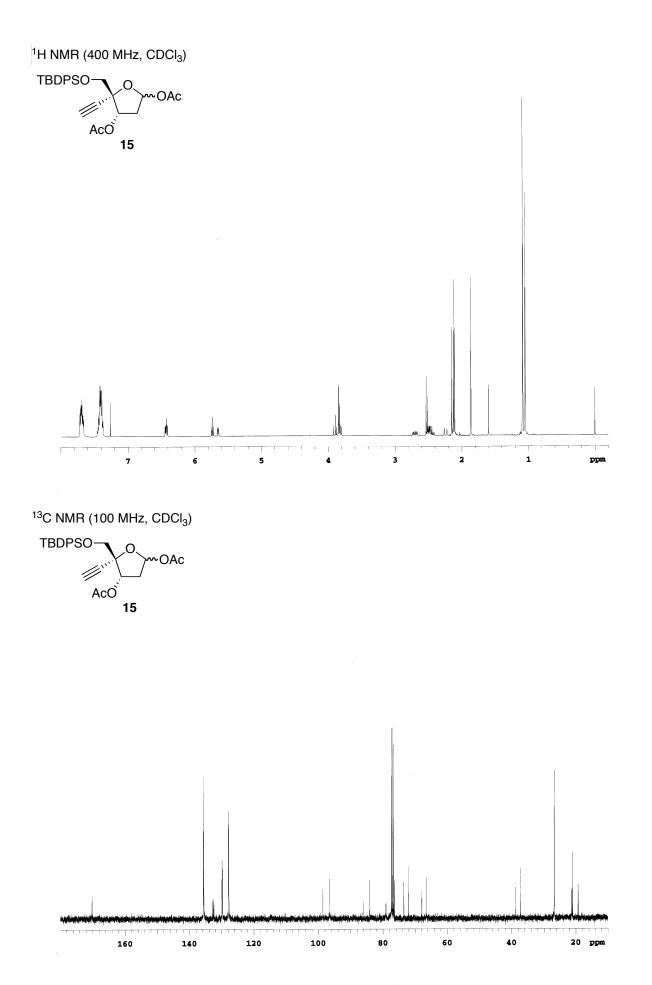


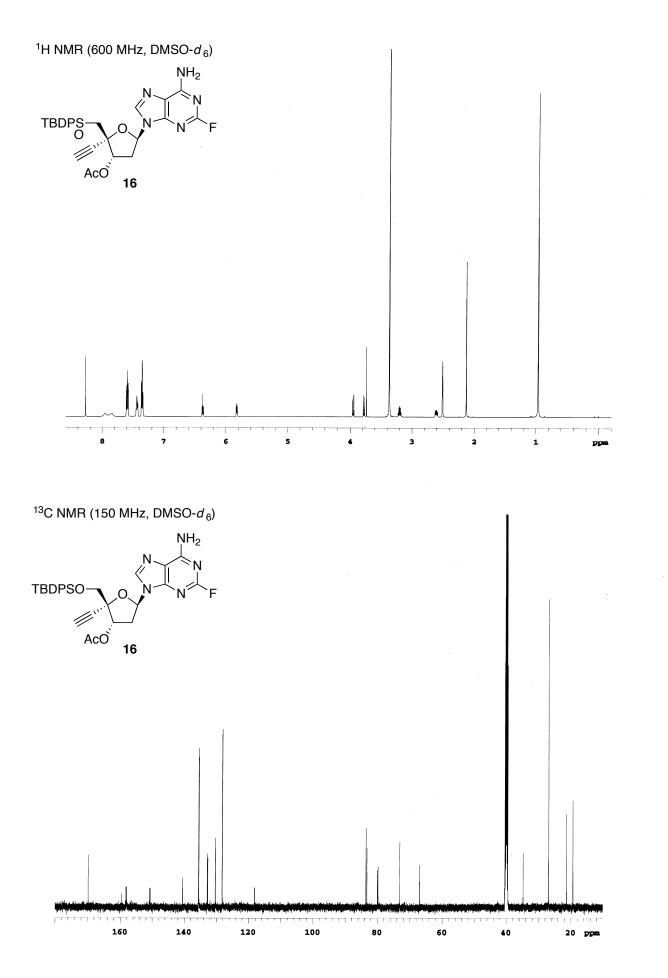


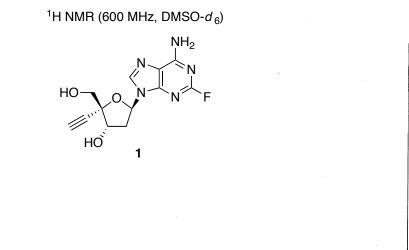


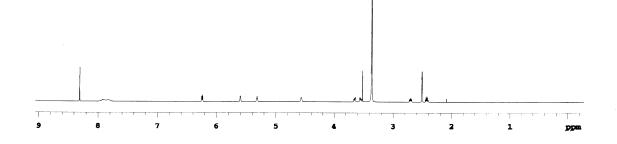

¹³C NMR (100 MHz, CDCl₃)

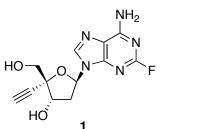

HO. HO`` 8 ŌMOM

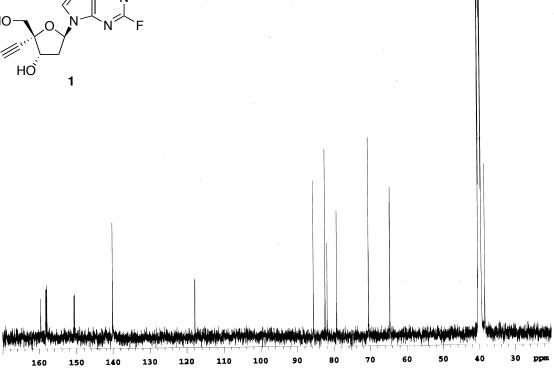












¹³C NMR (150 MHz, DMSO- d_6)

