Studies on the Synthesis of Apoptolidin: Synthesis of a C_1 - C_{27} Fragment of Apoptolidin D Madduri Srinivasarao, Youngsoon Kim, Xiaojin Li, Daniel W. Robbins and Philip L. Fuchs*. Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 ## List of Contents | Spectral Data | Page Number | |---|-------------| | 300 MHz ¹ H NMR of compound 9 in CDCl ₃ | S 1 | | 75 MHz ¹³ C NMR of compound 9 in CDCl ₃ | S 2 | | 300 MHz ¹ H NMR of compound 10 in CDCl ₃ | S 3 | | 75 MHz ¹³ C NMR of compound 10 in CDCl ₃ | S4 | | 300 MHz ¹ H NMR of compound 6 in CDCl ₃ | S 5 | | 75 MHz ¹³ C NMR of compound 6 in CDCl ₃ | S 6 | | 300 MHz ¹ H NMR of compound 11 in CDCl ₃ | S 7 | | 75 MHz ¹³ C NMR of compound 11 in CDCl ₃ | S 8 | | 75 MHz ¹³ C NMR of compound 13 in CDCl ₃ | S 9 | | 300 MHz ¹ H NMR of compound 13 in CDCl ₃ | S10 | | 300 MHz ¹ H NMR of compound 15 in CDCl ₃ | S 11 | | 75 MHz ¹³ C NMR of compound 15 in CDCl ₃ | S12 | | 300 MHz ¹ H NMR of compound 16 in CDCl ₃ | S 13 | | 75 MHz ¹³ C NMR of compound 16 in CDCl ₃ | S 14 | | 300 MHz ¹ H NMR of compound 17 in CDCl ₃ | S15 | | 75 MHz ¹³ C NMR of compound 17 in CDCl ₃ | S16 | |--|-------------| | 300 MHz ¹ H NMR of compound 21 in CDCl ₃ | S17 | | 75 MHz ¹³ C NMR of compound 21 in CDCl ₃ | S18 | | 121 MHz ³¹ P NMR of compound 21 in CDCl ₃ | S 19 | | 300 MHz ¹ H NMR of compound 19 in CDCl ₃ | S20 | | 300 MHz ¹ H NMR of compound 24 in CDCl ₃ | S21 | | 75 MHz ¹³ C NMR of compound 24 in CDCl ₃ | S22 | | 300 MHz ¹ H NMR of compound 25 in CDCl ₃ | S23 | | 75 MHz ¹³ C NMR of compound 25 in CDCl ₃ | S24 | | 300 MHz ¹ H NMR of compound 26 in CDCl ₃ | S25 | | 75 MHz ¹³ C NMR of compound 26 in CDCl ₃ | S26 | | 300 MHz ¹ H NMR of compound 27 in CDCl ₃ | S27 | | 75 MHz ¹³ C NMR of compound 27 in CDCl ₃ | S28 | | 300 MHz ¹ H NMR of compound 28 in CDCl ₃ | S29 | | 75 MHz ¹³ C NMR of compound 28 in CDCl ₃ | S30 | | 300 MHz ¹ H NMR of compound 30 in CDCl ₃ | S31 | | 300 MHz ¹ H- ¹ H COSY NMR of compound 30 in CDCl ₃ | S32 | | 75 MHz ¹³ C NMR of compound 30 in CDCl ₃ | S33 | | 300 MHz ¹ H NMR of compound 34 in CDCl ₃ | S34 | | 300 MHz ¹ H- ¹ H COSY NMR of compound 34 in CDCl ₃ | S35 | | 300 MHz ¹ H NMR of compound 35 in CDCl ₃ | S36 | | 75 MHz ¹³ C NMR of compound 35 in CDCl ₃ | S37 | | 300 MHz ¹ H NMR of compound 37 in C ₆ D ₆ | S38 | | 75 MHz 13 C NMR of compound 37 in C_6D_6 | S39 | | 300 MHz ¹ H NMR of compound 3 in CDCl ₃ | S40 | $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{9}$ in CDCl_3 75 MHz 13 C NMR of compound **9** in CDCl₃ $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{10}$ in CDCl_3 75 MHz $^{13}\mathrm{C}$ NMR of compound $\mathbf{10}$ in CDCl_3 $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{6}$ in CDCl_3 75 MHz 13 C NMR of compound **6** in CDCl₃ $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\boldsymbol{11}$ in CDCl_3 75 MHz 13 C NMR of compound 11 in CDCl $_3$ 75 MHz 13 C NMR of compound 13 in CDCl $_3$ $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\boldsymbol{13}$ in CDCl_3 $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{15}$ in CDCl_3 75 MHz 13 C NMR of compound 15 in CDCl $_3$ 75 MHz 13 C NMR of compound 17 in CDCl $_3$ 75 MHz 13 C NMR of compound **21** in CDCl₃ $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{19}$ in CDCl_3 $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{24}$ in CDCl_3 75 MHz ¹³C NMR of compound **24** in CDCl₃ $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{25}$ in CDCl_3 75 MHz 13 C NMR of compound **25** in CDCl $_3$ $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{26}$ in CDCl_3 75 MHz 13 C NMR of compound **26** in CDCl $_3$ $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{27}$ in CDCl_3 75 MHz 13 C NMR of compound **27** in CDCl₃ $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound $\mathbf{28}$ in CDCl_3 75 MHz 13 C NMR of compound **28** in CDCl₃ 300 MHz ¹H-¹H COSY NMR of compound **30** in CDCl₃ 75 MHz 13 C NMR of compound **30** in CDCl₃ ¹H-¹H-COSY NMR of compound **34** in CDCl₃ $300~\mathrm{MHz}$ $^1\mathrm{H}$ NMR of compound 35 in CDCl_3 75 MHz 13 C NMR of compound **35** in CDCl₃ $300\ MHz\ ^1H\ NMR$ of compound 37 in C_6D_6 75 MHz ^{13}C NMR of compound 37 in C_6D_6