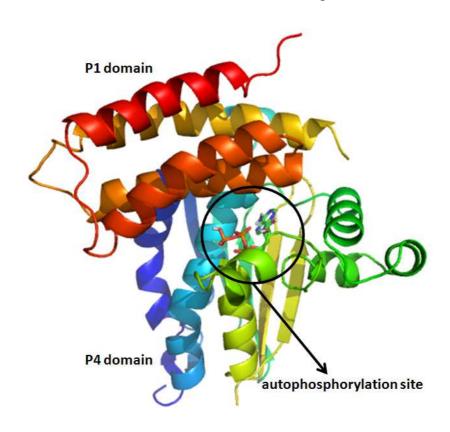
Supporting information

Mechanism for the Autophosphorylation of CheA Histidine Kinase: QM/MM Calculations

Ting Shi^{1,3}, Yunxiang Lu², Xinyi Liu¹, Yingyi Chen¹, Hualiang Jiang³, Jian Zhang^{1,*}

¹ Department of Pathophysiology, Key Laboratory of Cell Differentiation and

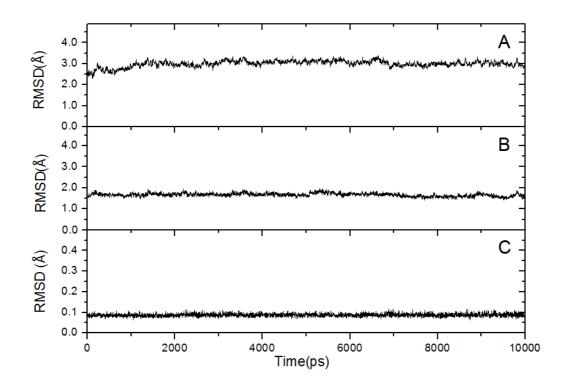
Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of

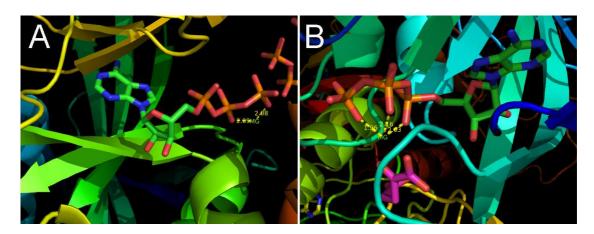

Medicine, Shanghai 200025, China;

² Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China;


³ Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

*To whom correspondence should be addressed: E-mail: jian.zhang@sjtu.edu.cn


Figure S1. The constructed 3D model of P1-P4-ATP complex


Figure S2. Key residues around the active site of P1-P4-ATP complex including His45, Thr46, Leu47, Lys48, Gly49, His64, Glu67, Arg160, Asn161, Ala162, His165, Gly166, Gly255 and Val256. Complex is shown in green; ATP in yellow and key residues in mauve.

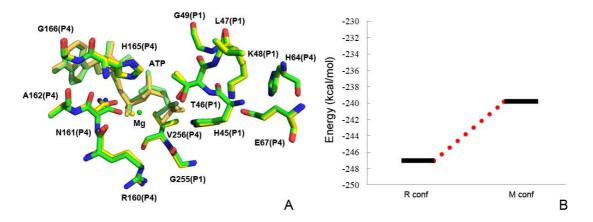

Figure S3. RMSD of C^{α} atoms in P1-P4-ATP complex (A) and RMSD of heavy atoms of the key residues (shown in the Supplementary **Figure S2**) and ATP around the active site in P1-P4-ATP complex (B) relative to the initial structure versus simulation time.

Figure S4. (A) The binding environment of O^{β} and O^{γ} atoms of ATP binding to Mg^{2+} ion in AMP-activated protein kinase (PDB ID code: 2V9J). (B) The binding environment of O^{α} , O^{β} and O^{γ} atoms of ATP binding to Mg^{2+} ion in P_{II} signal transduction protein (PDB ID code: 2ZXW). Yellow dished lines represent the bond lengths between Mg^{2+} and O atoms of ATP.

Figure S5. (A) The comparative view of catalytic environments between the R conformation and the M conformation in the P1-P4-ATP complex. ATP, Mg²⁺ and carbon atoms in the R conformation are colored in green and in the M conformation are colored in yellow. All side chains of crucial residues in the binding site are shown as stick and labeled. (B) The energy difference between the R conformation and the M conformation.

