Supporting information ## Mechanism for the Autophosphorylation of CheA Histidine Kinase: QM/MM Calculations Ting Shi^{1,3}, Yunxiang Lu², Xinyi Liu¹, Yingyi Chen¹, Hualiang Jiang³, Jian Zhang^{1,*} ¹ Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; ² Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China; ³ Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China *To whom correspondence should be addressed: E-mail: jian.zhang@sjtu.edu.cn **Figure S1.** The constructed 3D model of P1-P4-ATP complex **Figure S2.** Key residues around the active site of P1-P4-ATP complex including His45, Thr46, Leu47, Lys48, Gly49, His64, Glu67, Arg160, Asn161, Ala162, His165, Gly166, Gly255 and Val256. Complex is shown in green; ATP in yellow and key residues in mauve. **Figure S3.** RMSD of C^{α} atoms in P1-P4-ATP complex (A) and RMSD of heavy atoms of the key residues (shown in the Supplementary **Figure S2**) and ATP around the active site in P1-P4-ATP complex (B) relative to the initial structure versus simulation time. **Figure S4.** (A) The binding environment of O^{β} and O^{γ} atoms of ATP binding to Mg^{2+} ion in AMP-activated protein kinase (PDB ID code: 2V9J). (B) The binding environment of O^{α} , O^{β} and O^{γ} atoms of ATP binding to Mg^{2+} ion in P_{II} signal transduction protein (PDB ID code: 2ZXW). Yellow dished lines represent the bond lengths between Mg^{2+} and O atoms of ATP. **Figure S5.** (A) The comparative view of catalytic environments between the R conformation and the M conformation in the P1-P4-ATP complex. ATP, Mg²⁺ and carbon atoms in the R conformation are colored in green and in the M conformation are colored in yellow. All side chains of crucial residues in the binding site are shown as stick and labeled. (B) The energy difference between the R conformation and the M conformation.