Convenient Syntheses of *Benzo*-Fluorinated Dibenz[*b*,*f*]azepines: Rearrangements of Isatins, Acridines and Indoles

Emma-Claire Elliott,[†] Elizabeth R. Bowkett,[†] James L. Maggs,[‡] John Bacsa,[†] B. Kevin Park, [‡] Sophie L. Regan[‡], Paul M. O'Neill and Andrew V. Stachulski^{†*}

[†] Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; [‡]MRC Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Ashton St., Liverpool, UK

Supporting Information

Table of Contents

- 1. General Experimental
- 2. Experimental Procedures
- 3. Copies of ¹H NMR and ¹³C NMR Spectra
- 4. References.
- 1. General Experimental

All reactions were carried out under an inert nitrogen or argon atmosphere unless otherwise stated. Reactions were monitored using thin layer chromatography (TLC) performed on Merck Silica gel 60 F_{254} plates. Fluorinated reagents were purchased from Fluorochem: all other reagents were purchased from SigmaAldrich and used as received. All reaction solvents were purchased from Fisher Scientific and used as received. ¹H, ¹³C and ¹⁹F NMR Spectra were obtained using a Bruker Avance instrument operating at 400, 100 and 376 MHz respectively. ¹H and ¹³C NMR spectral data are reported in ppm (δ) relative to their residual solvent peaks. For ¹H NMR the chemical shifts are relative to 7.26 (CDCl₃) and 2.50 (DMSO-d₆); for ¹³C NMR the chemical shifts are relative to 77.00 (CDCl₃) and 39.50 (DMSO-d₆).¹ Coupling constants (*J*) are reported in Hz. High resolution mass spectrometry for the N-aryl indoles and Iminostilbenes were performed by the National Mass Spectrometry Service based in Swansea; all other samples were obtained in electrospray mode (ES) with a micromass LCT mass spectrometer operating in the positive or negative ion mode as indicated. Elemental analyses for the N-aryl indoles and iminostilbenes were performed by Mr. Stephen Boyer of London Metropolitan University, all other analyses were performed by Mr. Steven Apter of the University of Liverpool. Infra red spectra were recorded on a Jasco FTIR ATR spectrometer. Melting points were recorded

using Bibby-Sterlin Stuart SMP3 melting point apparatus. Flash chromatography was performed on VWR silica gel (40-63 μ m).

2. Experimental Procedures

1-(4-Fluorophenyl)indoline-2,3-dione 10: Isatin (4 g, 27.19 mmol) and CuO (4.33 g, 54.37 mmol) were suspended in dimethylacetamide (DMA) (70 mL). 1-Bromo-4-fluorobenzene (4.19 mL, 38.06 mmol) was added dropwise over 1 h, then the reaction mixture was heated to 150 °C (\pm 5 °C) for 24 h. The reaction was then filtered through Celite® 521 and the filtrate poured into an ice-water slurry (700 mL).ii then stirred for 30 min. The resulting red/brown precipitate was isolated by

filtration, dried, redissolved in acetone and filtered for a second time through Celite® 521 to remove any insoluble material. The filtrate was concentrated and purified by column chromatography (dichloromethane) to afford the product as an orange crystalline solid (3.93 g, 60 %). ¹H NMR (400.13 MHz, DMSO-d₆) δ 7.65 (d, *J* = 7.4 Hz, 1 H), 7.61 (dt, *J* = 7.8, 1.3 Hz, 1 H), 7.57 - 7.51 (m, 2 H), 7.47 - 7.40 (m, 2 H), 7.19 (t, *J* = 7.5 Hz, 1 H) and 6.79 (d, *J* = 8.0 Hz, 1 H); ¹³C NMR [100.62 MHz, DMSO d₆] δ 182.6, 161.4 (d, ¹*J*_{CF} = 245.4 Hz), 157.5, 151.2, 138.0, 129.6 (d, ⁴*J*_{CF} = 3.0 Hz), 128.9 (d, ³*J*_{CF}= 9.0 Hz), 124.6, 123.6, 117.6, 116.6 (d, ²*J*_{CF} = 22.8 Hz) and 110.6; ¹⁹F NMR (376.46 MHz, DMSO-d₆) δ -112.82; *m*/*z* [CI, NH₃] 259; Found: m/*z*, 259.0878. C₁₄H₁₂FN₂O₂ (MNH₄⁺) req. m/*z*, 259.0883; Found: C 69.66, H 3.31, N 5.78; C₁₄H₈FNO₂ req. C 69.71, H 3.34, N 5.81%; v_{max} (cm⁻¹) [ground solid] 1736 (s), 1604 (s),1506 (m), 1460 (m), 1180 (m, C-F stretch), 835 (m) and 756 (m); m.p. = 236 °C.

2-Fluoroacridine-9-carboxylic acid 11: 1-(4-Fluorophenyl)indoline-2,3dione (3.044 g, 12.63 mmol) was dissolved in ethanol (100 mL) and 60 % $KOH_{(aq)}$ (25 mL) added cautiously to the mixture forming a clear, yellow solution. The reaction was then heated to gentle reflux overnight, during which

time the mixture became dark yellow-brown. After 45 h the reaction was cooled to room temperature, concentrated and re-dissolved in water (400 mL). The alkaline solution (~ pH 14) was washed with ether (3 × 100 mL). The aqueous phase was then acidified with 2 M HCl to pH 1-2 and the resulting precipitate isolated by filtration, washed with ether and dried. Product that remained in the acidified aqueous phase was extracted with a 1:1 mixture of EtOAc/THF (3 × 100 mL). The combined organic extracts were dried (sodium sulphate), filtered and evaporated. The desired acridine-9-carboxylic acid was obtained as a yellow solid (2.50 g, 82 %); ¹H NMR (400 MHz, DMSO-d₆) δ 8.37 (dd, *J* = 5.6, 9.6 Hz, 1 H), 8.29 - 8.25 (m, 1 H), 8.16 (d, *J* = 8.4 Hz, 1 H), 8.00 - 7.91 (m, 2 H) and 7.83 - 7.77 (m, 2 H); ¹³C NMR (100.13 MHz, DMSO-d₆) δ 167.7, 159.9 (d, ¹*J*_{CF} = 249.6 Hz), 147.2, 145.1, 132.3 (d, ³*J*_{CF} = 9.1 Hz), 131.2, 129.0, 128.2, 125.1, 122.9 (d, ²*J*_{CF} = 28.3 Hz), 121.4 and 107.5 (d, ²*J*_{CF} = 23.2 Hz); ¹⁹F

NMR (376.56 MHz, DMSO-d₆) δ = -110.15; m/z [ES⁻]: [M-H]⁺ 240, [2M-H]⁻ 481; Found: m/z, 240.0461; C₁₄H₇FNO₂ [M-H]⁺ req. m/z, 240.0421; v_{max} (cm⁻¹) (ground solid) 3367 (m), 1188 (s), 825, 758; m.p. 254 °C.

2-[(4-Fluorophenyl)amino]benzoic acid 12: Isolated as a by-product from the preceding reaction: dark orange solid; ¹H NMR (400MHz, DMSO-d₆) δ 13.01 (br s, 1 H), 9.54 (br s, 1 H), 7.91 (dd, J = 1.5, 8.0 Hz, 1 H), 7.37 (ddd, J = 1.6, 7.1, 8.5 Hz, 1 H), 7.32 - 7.24 (m, 2 H), 7.23 - 7.14 (m, 2 H), 7.07 (d, J = 8.4 Hz, 1 H), 6.79 - 6.74 (m, 1 H); ¹³C NMR (100.13 MHz, DMSO-d₆) δ 169.9, 158.4 (d, ¹ $J_{CF} = 240.1$ Hz), 147.6, 136.7 (d, ⁴ $J_{CF} = 2.4$ Hz), 134.2, 131.8, 124.2 (d, ³ $J_{CF} = 8.0$ Hz), 117.1, 116.0 (d, ² $J_{CF} = 22.4$ Hz), 133.2, 112.2; ¹⁹F NMR (376.56 MHz, DMSO-d₆) δ -199.29; *m*/*z* [CI+NH₃] 232; Found: m/z, 232.0777; C₁₃H₁₁FNO₂ [M+H]⁺ req. m/z, 232.0774; m.p. 148-150 °C

2-Fluoroacridine-9-carboxylic acid methyl ester 13: Using standard Schlenk techniques, 2-fluoroacridine-9-carboxylic acid (2.30 g, 9.45 mmol) was dissolved in freshly distilled thionyl chloride (70 mL). The solution was then heated to 80 °C, and stirred under an inert atmosphere for 14 hours. The

thionyl chloride was removed *in vacuo* and the residue dissolved in methanol and left to stir for 2 h at room temperature in an inert atmosphere, then the methanol was removed: the residue was dissolved in CH₂Cl₂ and washed with saturated aq. NaHCO₃, water and brine. The organic extract was dried over sodium sulphate, filtered and evaporated. The crude methyl ester was isolated pure after column chromatography in ether/hexane (1:2) as a beige solid (1.69 g, 70 %); ¹H NMR (400MHz, DMSO-d₆) δ 8.27 (dd, 1 H, *J* = 9.4, 5.5 Hz), 8.25 (d, 1 H, *J* = 8.8 Hz), 8.03 (d, 1 H, *J* = 8.7 Hz), 7.80 (ddd, 1 H, *J* = 8.7, 6.7, 1.4 Hz) and 7.66-7.60 (m, 3H), 4.21 (s, 3H); ¹³C NMR (100.13 MHz, DMSO-d₆) δ 167.5, 160.5 (d ¹*J*_{CF} = 251.5 Hz), 148.1 (d, ⁴*J*_{CF} = 2.23 Hz), 146.1, 135.8 (d, *J*_{CF} = 7.9 Hz), 132.8 (d, *J* = 9.4 Hz), 130.1 (d, *J* = 12.6 Hz), 127.8, 124.8, 122.8 (d, *J* = 10.4 Hz), 122.7, 122.3, 122.0, 107.4 (d, *J* = 23.8 Hz) and 53.1; ¹⁹F NMR (376.56 MHz, DMSO-d₆) δ -109.99; *m*/*z* [CI + NH₃] 256, 198; Found: m/z, 256.0777; C₁₅H₁₁FNO₂ (MH⁺) req. m/z, 256.0774; Found: C, 70.44 ; H, 4.01; N, 5.44; C₁₅H₁₀FNO₂ req. C 70.58; H, 3.95; N, 5.49 %; v_{max} (cm⁻¹) [ground solid] 1720 (s), 1462 (m), 1215 (s), 1171 (s), 827 (m), 760 (m); m.p. 147 °C.

(2-Fluoro-9,10-dihydroacridin-9-yl)methanol 14: 2-Fluoroacridine-9carboxylic acid methyl ester (1.05 g, 4.12 mmol) was dissolved in anhydrous THF (60 mL) to which LiAlH₄ (1 M in THF, 5.15 mL) was added dropwise under an inert atmosphere. The reaction was then slowly heated to 80 °C and maintained at that temperature for 3 h. The reaction was then quenched by addition of H₂O (0.4 mL) followed by 15% aq. NaOH (0.4 mL) and further H₂O (1.2 mL). The resulting precipitate was filtered off, then the filtrate was diluted with EtOAc, washed with water and sat. aq. NaHCO₃ followed by drying over sodium sulphate, filtration and evaporation to yield the crude product. Purification by column chromatography (ethyl acetate/hexane, 1:4) yielded the alcohol as a pale, rather air-sensitive yellow solid (0.89 g, 92 %); ¹H NMR (400 MHz, DMSO-d₆) δ 7.18 (dq, *J* = 7.5, 1.1 Hz, 2 H), 6.97 - 6.92 (m, 2 H), 6.88 (dt, *J* = 8.4, 2.8 Hz, 1 H), 6.75 (dd, *J* = 7.9, 1.0 Hz, 1 H), 6.68 (dd, *J* = 8.6, 4.6 Hz, 1 H), 6.08 (br s, 1 H), 4.07 (t, *J* = 6.7 Hz, 1 H) and 3.62 (d, *J* = 6.6 Hz, 2 H); ¹³C NMR (100.13 MHz, DMSO-d₆) δ 157.7 (d, ¹*J*_{CF} = 238.4 Hz), 139.8, 136.01 (d, ⁴*J*_{CF} = 1.8 Hz), 129.1, 127.9, 121.86 (d, ³*J*_{CF} = 6.9 Hz), 120.97, 119.34, 115.5 (d, ²*J*_{CF} = 22.4 Hz), 114.3 (d, ²*J*_{CF} = 22.9 Hz), 114.2 (d, ³*J*_{CF} = 7.8 Hz), 113.7, 67.4 and 45.5; ¹⁹F NMR (376.56 MHz, DMSO-d₆) δ -123.84; *m*/*z* (CI) [M+H]⁺ 230, 212, 198; Found: m/*z*, 230.0981; V_{max} (cm⁻¹) [ground solid] 3291 (m), 1485 (s), 1313 (m), 1227 (m), 814 (m), 748 (m); m.p. 130 °C.

Characterisation of compound 15 is given below.

General experimental procedure for the synthesis of *N*-aryl Indoles.

N-Aryl indoles were prepared with modification of the procedure reported by Ma *et al*² as follows:

The appropriate indole (2.2 mmol), K_2CO_3 (5.0 mmol), CuI (0.1 mmol) and L-proline (0.2 mmol) were dissolved in DMSO (4 mL). The mixture was heated gently to 100 °C (± 5 °C) under an inert atmosphere for 10 min, then iodobenzene (2.0 mmol) was added dropwise over 20 min and the reaction left to stir for 24 h. Upon completion the cooled solution was partitioned between EtOAc and H₂O and the aqueous layer extracted with EtOAc (×2); the combined organic phases were washed with brine and dried over Na₂SO₄, filtered and concentrated. The crude material was subsequently purified by column chromatography to give the pure product.

1-(3-Fluorophenyl)-1*H***-indole (NAI-3'-F):** Pale yellow oil, 78 %; (400 MHz, CDCl₃) δ 7.69-7.67 (m, 1H, H), 7.59-7.57 (m, 1H), 7.42 (dt, *J*=8.2, 6.2 Hz, 1H), 7.31 (d, *J*=3.3 Hz, 1H), 7.30-7.15 (m, 4H), 7.03 (tdd, *J* = 8.3, 2.5, 0.9 Hz, 1H) and 6.69 (d, *J*= 3.3, 0.8Hz, 1H); ¹³C NMR [100.62 MHz, CDCl₃] δ 163.5 (d, ¹*J*_{CF} = 247.5 Hz), 141.6 (d, ³*J*_{CF} = 10.0 Hz), 135.9, 131.2 (d, *J* =

9.3 Hz), 129.8, 127.9, 123.0, 121.6, 121.0, 120.0 (d, ${}^{4}J_{CF}$ =3.1 Hz), 113.5 (d, 2*J*CF = 21.1 Hz), 111.8 (d, ${}^{2}J_{CF}$ = 23.8 Hz), 110.7 and 104.6; 19 F NMR [376.46 MHz, CDCl₃] δ -111.23 (s); Found: C, 79.69; H, 4.81; N, 6.52; C₁₄H₁₀FN req. C, 79.60; H, 4.77; N, 6.63 %; Found: m/z, 212.0872; C₁₄H₁₁FN [M + H]⁺ req. m/z, 212.0870; v_{max} (cm⁻¹, neat) 1546.63 (s), 1461.78 (m) and 1203.36 (m).

4-Fluoro-1-phenyl-1*H***-indole (NAI-4-F):** Pale yellow oil, 70 %; ¹H NMR (400 MHz, CDCl₃) δ 7.4 - 7.5 (m, 4 H), 7.3 - 7.4 (m, 1 H), 7.3 (dd, *J*=8.3, 0.4 Hz, 1 H), 7.3 (d, *J*=3.3 Hz, 1 H), 7.1 (dt, *J*=8.1, 5.2 Hz, 1 H), 6.8 (ddd, *J*=10.2, 7.9, 0.5 Hz, 1 H) and 6.8 (dd, *J*=3.3, 0.8 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 156.4 (d, *J*=248.8 Hz), 139.4 (s), 138.4 (d, *J*=11.1 Hz), 129.6 (s), 127.9 (s), 126.8 (s), 124.4 (s), 122.8 (d, *J*=7.7 Hz), 118.3 (d, *J*=24.5 Hz), 106.6 (d, *J*=3.5 Hz), 105.2 (s),

105.0 (s), 99.5 (s) and 99.4 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.2 (s); Found: C, 79.73; H, 4.91; N, 6.14; C₁₄H₁₀FN req. C, 79.60; H, 4.77; N, 6.63 %.

1-(4-Fluorophenyl)-1*H***-indole (NAI-4'-F) 18:** Colourless oil, 81 %; ¹H NMR [400.13 MHz, CDCl₃] δ 7.67-7.65 (m, 1H), 7.44-7.42 (m, 1H) 7.40-7.35 (m, 2H), 7.21-7.10 (m, 5H) and 6.64 (dd, *J* =3.3, 0.7 Hz, 1H); ¹³C NMR [100.62 MHz, CDCl₃] δ 161.3 (d, ¹*J*_{CF} = 246.2 Hz, C^{4'}), 136.4 (s), 136.2 (d, ⁴*J*_{CF} = 3.0 Hz, C^{1'}), 129.5 (s), 128.3 (s, C²), 126.4 (d, ³*J*_{CF} = 8.4 Hz, C^{2',6'}), 122.8 (s), 121.5 (s), 120.7 (s), 116.7 (d, ²*J*_{CF} = 22.7 Hz, C^{3',5'}), 110.5 (s) and 103.9 (s); ¹⁹F NMR [376.46

MHz, CDCl₃] δ -115.59 (s); Found: C, 79.73; H, 4.91; N, 6.14; C₁₄H₁₀FN req. C, 79.60; H, 4.77; N, 6.63 %; Found: m/z, 212.0873; C₁₄H₁₁FN [MH⁺] req. m/z, 212.0870.

5-Fluoro-1-phenyl-1*H***-indole (NAI-5-F):** Pale yellow oil, 76 %; ¹H NMR (400 MHz, CDCl₃) δ = 7.54- 7.43 (m, 5 H), 7.38 - 7.30 (m, 3 H), 6.95 (dt, *J* = 2.5, 9.1 Hz, 1 H) and 6.63 (dd, *J* = 0.6, 3.2 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 158.1 (d, ¹*J*_{CF} =234.6 Hz), 139.6, 132.5, 129.7, 129.6 (d, ³*J*_{CF} =13.8 Hz), 129.4, 126.7, 124.3, 111.2 (d, ³*J*_{CF} =9.6 Hz), 110.6 (d, ²*J*_{CF} =26.1 Hz), 105.8

(d, ${}^{2}J_{CF}$ =23.4 Hz) and 103.4 (d, ${}^{4}J_{CF}$ = 4.6 Hz); ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -122.40; Found: C, 79.70; H, 4.82; N, 6.72; C₁₄H₁₀FN req. C, 79.60; H, 4.77; N, 6.63 %; Found: m/z, 212.0868; C₁₄H₁₁FN [MH⁺] req. m/z, 212.0870.

6-Fluoro-1-phenyl-1*H***-indole (NAI-6-F):** Pale yellow oil, 83 %; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 5.4, 8.7 Hz, 1 H), 7.55 - 7.45 (m, 4 H), 7.37 (t, J = 7.4 Hz, 1 H), 7.31 (d, J = 3.3 Hz, 1 H), 7.25 - 7.21 (m, 1 H), 6.93 (dt, J = 2.3, 9.0 Hz, 1 H) and 6.65 (d, J = 3.3 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 160.2 (d, ¹ $J_{CF} = 236.5$ Hz), 139.4, 135.8 (d, ³ $J_{CF} = 12.3$ Hz), 129.7,

128.4 (d, ${}^{4}J_{CF}$ =3.8 Hz), 126.7, 125.6, 124.2, 121.8 (d, ${}^{3}J_{CF}$ =10.0 Hz), 109.1 (d, ${}^{2}J_{CF}$ =24.9 Hz), 103.6 and 97.0 (d, ${}^{2}J_{CF}$ =26.5 Hz); ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -120.65; Found: C, 79.48; H, 4.85; N, 6.7; C₁₄H₁₀FN req. C, 79.60; H, 4.77; N, 6.63 %; Found: m/z, 212.0869; C₁₄H₁₁FN [MH⁺] req. m/z, 212.0870.

6-Fluoro-1-(3-fluorophenyl)-1*H***-indole (NAI-3',6-F):** Pale yellow oil, 75 %; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 5.4, 8.7 Hz, 1 H), 7.45 (dt, *J* = 6.3, 8.2 Hz, 1 H), 7.29 - 7.20 (m, 3 H), 7.17 (td, *J* = 2.3, 9.7 Hz, 1 H), 7.05 (ddt, *J* = 0.9, 2.5, 8.3 Hz, 1 H), 6.94 (ddd, *J* = 2.3, 8.8, 9.3 Hz, 1 H) and 6.64 (dd, *J* = 0.8, 3.3 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ

163.2 (d, ${}^{1}J_{CF}$ =248.1 Hz), 160.3 (d, ${}^{1}J_{CF}$ =238.5 Hz), 140.9 (d, ${}^{3}J_{CF}$ =10.0 Hz), 135.6 (d, ${}^{3}J_{CF}$ =12.3 Hz), 131.0 (d, ${}^{3}J_{CF}$ =9.2 Hz), 128.0 (d, ${}^{4}J_{CF}$ =3.5 Hz), 125.8 (s), 122.0 (d, ${}^{3}J_{CF}$ =10.0 Hz), 119.5 (d, ${}^{4}J_{CF}$ =3.1 Hz), 113.5 (d, ${}^{2}J_{CF}$ =21.1 Hz), 111.3 (d, ${}^{2}J_{CF}$ =23.8 Hz), 109.4 (d, ${}^{2}J_{CF}$ =24.5 Hz), 104.3 (s) and 97.0 (d, ${}^{2}J_{CF}$ =27.2 Hz); ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -110.8, -119.9; Found: C, 73.37; H, 4.03; N, 5.94 ; C₁₄H₉F₂N req. C, 73.36; H, 3.96; N, 6.11 %; Found: m/z, 230.0772; C₁₄H₁₀F₂N [MH⁺] req. m/z, 230.0776.

5-Fluoro-1-(4-fluorophenyl)-1*H***-indole** (**NAI-4',5-F**) **19:** Pale yellow oil, 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.38- 7.43 (m, 2H), 7.27 - 7.36 (m, 3H), 7.15 - 7.22 (m, 2H), 6.94 (td, *J*=9.1, 2.6 Hz, 1H), 6.61 (dd, *J*=3.2 and 0.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.9 (d, ¹*J*_{CF}=247.7 Hz), 157.7 (d, ¹*J*_{CF} =235.4 Hz), 135.6 (d, ⁴*J*_{CF}=2.7 Hz), 132.7, 129.5, 129.4, 126.1 (d, ³*J*_{CF}=8.4 Hz), 116.5 (d, ²*J*_{CF}=23.4 Hz), 110.9 (d, ⁴*J*_{CF}=6.5 Hz), 110.7 (d, ²*J*_{CF}=23.0

Hz), 105.9 (d, ${}^{2}J_{CF}$ =23.4 Hz) and 103.4 (d, ${}^{4}J_{CF}$ =4.6 Hz); ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -115.3, -124.5; C₁₄H₉F₂N req. C, 73.36; H, 3.96; N 6.11 %; Found: m/z, 230.0777; C₁₄H₁₀F₂N [MH⁺] req. m/z, 230.0776.

General experimental procedures for the synthesis of iminostilbenes.^{3, 4}

Method A: (*For the acridinemethanol route only*): A suspension of P_2O_5 (0.9 g, 6.34 mmol) in xylene (30 mL) was placed under an inert atmosphere and heated to 150 °C with stirring. (2-fluoro-9,10-dihydro-acridin-9-yl) methanol **14** (0.205 g, 0.895 mmol) was dissolved in xylene (50 mL) and added to the reaction over 2 h via a pressure equalizing dropping funnel. After addition was complete, the reaction mixture was stirred for a further 15 min, cooled to room temperature, poured into an ice/water slurry (300 mL) and vigorously stirred for 10 min. The reaction mixture was then extracted with ethyl acetate (2 × 60 mL) and the combined organic extracts washed with water, saturated aqueous NaHCO₃ and brine. The crude extract was then purified by column chromatography with 1:9 EtOAc/hexane to deliver **15** (0.11g, 58%).

Method B (For the N-aryl indoles): Polyphosphoric acid (1 mL per 100 mg aryl indole) was purged with argon and heated to 100 °C for 30 min. The N-aryl indole was then added to the gently stirring reaction mixture via a syringe and the reaction mixture left to stir at 110 °C (± 5 °C) for 36 to 72 h, with monitoring of reaction progress by partition TLC. Once judged to have reached completion the reaction mixture was allowed to cool slowly to 35 °C, poured cautiously into an ice-cold, saturated, aqueous NaHCO₃ solution and vigorously stirred for 1 h. The crude product was extracted with dichloromethane (2×100 mL) then the combined organic phases were washed with water, NaHCO₃ and brine. After concentration *in vacuo*, the combined crude material was purified by column chromatography using EtOAc/hexane 1:9.

1-Fluoro-5*H***-dibenz[***b***,***f***]azepine 22**: Prepared by method B using 4-fluoro-1-phenyl-1*H*-indole (1.012 g, 4.77 mmol) and hot polyphosphoric acid (10.152 g, 5.06 mL). The product was isolated as orange/yellow solid (0.245 g, 24 %); when starting from 1-(3-fluorophenyl)-1*H*-indole (1.219 g, 5.59 mmol), the

product was formed as a mixture with 3-fluoro-5*H*-dibenz[*b*,*f*]azepine and was separated by gradient elution with hexane \rightarrow 1:4 EtOAc/hexane (0.223 g, 18 %); ¹H NMR (400 MHz, CDCl₃) δ 7.03 - 7.10 (m, 1 H), 6.98 (td, *J*=8.1, 6.1 Hz, 1 H), 6.84 - 6.93 (m, 2 H), 6.48 - 6.60 (m, 3 H), 6.43 (d, *J*=1.0 Hz, 1 H), 6.31 (d, *J*=7.4 Hz, 1 H) and 5.03 (br s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7 (d, ¹*J*_{CF}=248.4 Hz), 151.0 (d, ³*J*_{CF}=5.4 Hz), 148.0 (s), 133.1 (d, ⁴*J*_{CF}=1.5 Hz), 130.6 (s), 130.1 (d, ³*J*_{CF}=10.7 Hz), 129.8 (s), 129.6 (s), 123.7 (d, ³*J*_{CF}=8.4 Hz), 123.4 (s), 119.6 (s), 118.0 (d, ²*J*_{CF}=14.6 Hz), 114.8 (d, ⁴*J*_{CF}=2.7 Hz) and 109.7 (d, ²*J*_{CF}=23.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -116.99; Found: m/z, 211.0807; C₁₄H₁₀FN [M⁺] requires m/z, 211.0797; m/z 212 [MH⁺]. Combined yield with **23**, 42%.

2-Fluoro-5*H***-dibenz[***b***,***f***]azepine 15: Prepared by method A, orange solid (v. s.; 0.110 g, 58 %) and method B, by two independent routes, also isolated as an orange solid. From1-(4-fluorophenyl)-1***H***-indole (2.018 g, 9.56 mmol)**

was obtained after purification 15 (0.810 g, 40.1 %); from 5-fluoro-1-phenyl-1H-indole (1.144 g, 5.42

mmol) was obtained after purification **15** (0.534 g, 47 %); ¹H NMR (400 MHz ,CDCl₃) δ 7.08 (dt, J = 1.9, 7.4 Hz, 1 H), 6.95 - 6.86 (m, 2 H), 6.76 (dt, J = 2.8, 8.3 Hz, 1 H), 6.62 (dd, J = 2.9, 9.2 Hz, 1 H), 6.55 (dd, J = 0.4, 7.8 Hz, 1 H), 6.49 (dd, J = 4.8, 8.6 Hz, 1 H), 6.44 (d, A of AB J = 11.8 Hz, 1 H), 6.30 (d, B of AB, J = 11.8 Hz, 1H) and 4.94 (br s, 1 H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 240.2$ (d, ¹ $_{J_{CF}} = 240.2$ Hz), 148.8, 144.5 (d, ⁴ $_{J_{CF}} = 2.3$ Hz), 133.8, 131.9 (d, ³ $_{J_{CF}} = 7.6$), 131.2 (d, ⁴ $_{J_{CF}} = 1.7$), 130.9, 130.1, 129.9, 123.6, 120.6 (d, ³ $_{J_{CF}} = 8.2$ Hz), 119.7, 116.7 (d, ² $_{J_{CF}} = 22.8$ Hz) and 115.8 (d, ² $_{J_{CF}} = 22.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -122.78$; Found: C, 79.73; H, 4.81; N, 6.60; C₁₄H₁₀FN requires C, 79.60; H 4.77; N, 6.63 %; Found: m/z, 212.0879; C₁₄H₁₁FN [M+H]⁺ requires m/z, 212.0876.

F

3-Fluoro-5*H***-dibenz[***b***,***f***]azepine 23: Prepared by method B: 6-fluoro-1-phenyl-1***H***-indole (1.311 g, 6.01 mmol) yielded the product as an orange oil (0.624 g, 48 %). 1-(3-Fluorophenyl)-1***H***-indole (1.219 g, 5.59 mmol) yielded**

the product as a mixture with 1-fluoro-5*H*-dibenz[*b*,*f*]azepine and **23** was separated by gradient elution with hexane \rightarrow 1:4 EtOAc/hexane, 0.271 g (22 %); ¹H NMR (400 MHz, CDCl₃) δ 7.00 (ddt, *J*=11.4, 7.9, 4.5, Hz, 1 H), 6.80 (d, *J*=4.2 Hz, 2 H), 6.80 (dd, *J*=8.4, 6.5 Hz, 1 H), 6.50 (td, *J*=8.3, 2.4 Hz, 1 H), 6.50 (d, *J*=7.8 Hz, 1 H), 6.20 (s, 2 H), 6.20 (dd, *J*=9.7, 2.5 Hz, 1 H) and 4.9 (br s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9 (d, ¹*J*_{CF} = 247.7 Hz), 150.0 (d, ³*J*_{CF} = 9.2 Hz), 147.3 (s), 131.8 (d, ³*J*_{CF} = 9.6 Hz), 131.2 (s), 131.1 (s), 130.5 (s), 129.6 (s), 129.5 (s), 125.8 (d, ⁴*J*_{CF} = 3.5 Hz), 123.4 (s), 119.3 (s), 109.3 (d, ²*J*_{CF}=21.1 Hz) and 106.5 (d, ²*J*_{CF} = 24.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm - 114.32; Found: m/z, 211.0793; C₁₄H₁₀FN [M⁺] requires m/z, 211.0797; m/z 212 [MH⁺]. The combined yield with **22**, when starting from 1-(3-fluorophenyl)-1*H*-indole, was 40%.

1,7-Difluoro-5*H***-dibenz[***b***,***f***]azepine 25**: 6-fluoro-1-(3-fluorophenyl)-1*H*indole (1.008 g, 4.4 mmol) yielded the product as a mixture with 3,7-difluoro-5*H*-dibenz[*b*,*f*]azepine **24** and yielded, after isolation by column chromatography, **25** (0.166 g, 16 %) together with **24** (35%, v. i.);¹H NMR

(400 MHz, CDCl₃) δ 6.98 (td, *J*=8.1, 6.1 Hz, 1 H) 6.82 (dd, *J*=8.4, 6.4 Hz, 1 H) 6.52 - 6.62 (m, 2 H) 6.48 (d, *J*=1.0 Hz, 1 H) 6.34 (d, *J*=1.0 Hz, 1 H) 6.21 - 6.29 (m, 2 H) and 5.01 (br s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0 (d, ¹*J*_{CF} = 248.7 Hz), 160.60 (d, ¹*J*_{CF} = 248.4), 149.9 (d, ⁴*J*_{CF} = 5.2 Hz), 149.6 (d, ³*J*_{CF} = 9.1 Hz), 132.11 (s), 131.9 (d, ³*J*_{CF} = 9.7 Hz), 130.2 (d, ³*J*_{CF} = 10.8 Hz), 125.8 (d, ⁴*J*_{CF} = 3.3 Hz), 122.8 (d, ³*J*_{CF} = 8.2 Hz), 122.8 (d, ³*J*_{CF} = 8.8 Hz), 118.0 (d, ²*J*_{CF} = 14.7 Hz), 114.8 (d, ⁴*J*_{CF} = 2.8 Hz), 110.1 (d, ²*J*_{CF} = 23.1 Hz), 109.9 (d, ²*J*_{CF} = 21.2 Hz) and 106.9 (d, ²*J*_{CF} = 24.0 Hz); ¹⁹F NMR

(376 MHz, CDCl₃) δ ppm -113.87, -116.84; Found: C, 73.25; H, 3.9; N, 6.0; C₁₄H₉F₂N requires C, 73.40; H, 3.9; N, 6.1%; Found: m/z, 229.0709; C₁₄H₉F₂N [M⁺] requires m/z, 229.0703.

2,8-Difluoro-5*H***-dibenz[***b***₃***f***]azepine 20:** 5-fluoro-1-(4-fluorophenyl)-1*H*-indole (1.214 g, 5.34 mmol) yielded the product as an orange solid after purification (0.797 g, 66 %);¹H NMR (400 MHz, CDCl₃) δ 6.77

(ddd, J = 8.5, 8.0, 2.9 Hz, 2 H), 6.63 (dd, J = 9.1, 2.9 Hz, 2 H), 6.49 (dd, J = 8.6, 4.8 Hz, 2 H), 6.38 (s, 2 H) and 4.86 (br s, 1 H); ¹³C NMR (400 MHz, CDCl₃) δ 159.2 (d, ¹ $J_{CF} = 240.8$ Hz), 144.2 (d, ⁴ $J_{CF} = 2.4$ Hz) 132.1 (d, ⁴ $J_{CF} = 1.9$ Hz), 131.2 (d, ³ $J_{CF} = 7.7$ Hz), 120.3 (d, ² $J_{CF} = 8.1$ Hz), 116.4 (d, ² $J_{CF} = 22.9$ Hz) and 115.8 (d, ² $J_{CF} = 22.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.31; Found: C, 73.25; H, 3.9; N, 6.0; C₁₄H₉F₂N requires C, 73.40; H, 3.9; N, 6.1%; Found: m/z, 230.0779; C₁₄H₁₀F₂N [M+H]⁺ requires m/z, 230.0781.

3,7-Difluoro-5*H***-dibenz[b_x f]azepine 24:** 6-fluoro-1-(3-fluorophenyl)-1*H*indole (1.008 g, 4.4 mmol) yielded the product as a mixture with 1,7difluoro-5*H*-dibenz[$b_x f$]azepine 25; after isolation by column

chromatography there was obtained **24** (0.351 g (35 %); ¹H NMR (400 MHz, CDCl₃) δ 6.77 (dd, *J*=8.4, 6.4 Hz, 2 H), 6.53 (dd, *J*=18.9, 2.5 Hz, 2 H), 6.21 (dd, *J*=9.7, 2.5 Hz, 2 H), 6.16 (s, 2 H) and 4.89 (br s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9 (d, ¹*J*_{CF} = 248.1 Hz), 152.2 (d, ⁴*J*_{CF} = 3.0 Hz), 149.0 (d, ³*J*_{CF} = 10.0 Hz), 131.8 (d, ³*J*_{CF} = 9.6 Hz), 130.2 (s), 109.7 (d, ²*J*_{CF} = 21.1 Hz) and 106.7 (d, ²*J*_{CF} = 24.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = -114.06; Found: C, 73.30; H, 3.8; N, 5.95; C₁₄H₉F₂N requires C, 73.40; H, 3.9; N, 6.1%; combined yield with **25**, 51%.

2,7-Difluoro-9-methylacridine 21: Isolated as a by-product from the preparation of **20**; yield variable, see text; ¹H NMR (400 MHz, CDCl₃) δ = 8.21 (dd, *J* = 5.7, 9.7 Hz, 2 H), 7.76 (dd, *J* = 2.8, 10.6 Hz, 2 H), 7.56 (ddd,

J = 9.6, 7.3, 2.7 Hz, 2 H) and 2.98 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 160.1$ (d, ¹ $J_{CF} = 257.6$ Hz), 145.4 (s), 140.5 (s), 133.2 (d, ³ $J_{CF} = 8.4$ Hz), 125.9 (d, ³ $J_{CF} = 10.0$ Hz), 121.3 (d, ² $J_{CF} = 28.4$ Hz), 106.5 (d, ² $J_{CF} = 23.0$ Hz) and 14.1 (s); ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -111.72$; Found: m/z, 230.0777; C₁₄H₁₀F₂N [M+H]⁺ requires m/z, 230.0781.

3. NMR Spectroscopic Data.

K Rec sec sec sec sec

Hz Hz Sec

usec dB MHz

usec dB dB MHz MHz

4-fluoro-1-phenyl-1H-indole carbon.liv CDCl3 {D:\Bruker\TOPSPIN} san

26

mdd

-180

-160

-140

-120

-100

R

g

4

-20

usec dB MHz

	C NAL-4'-F NO 20110113 - 20110113 - 20110113 - 16.48 - 2010113 - 16.48 - 2010113 - 16.48 - 2010113 - 201013 - 2010113 - 2010113 - 2010113 - 2010113 - 2010113 - 2010113 - 2010123 - 2010123 - 2010123 - 2010123 - 2010123 - 2010123 - 2010123 - 20023 - 2003 - 2003	3649.1 6,650 usec 6.00 usec 296.7 K 1.00000000 sec 0.03000000 sec 0.00002000 sec 1	CHANNEL fl 19F 18.00 usec -6.00 dB 376,4608844 MHz	RG2 CHANNEL (2	0.30 H= 1.00
	NAME EXPNO EXPNO EXPL FILE FULZ FULZ SWH SSWH FILE FULZ FULZ FULZ FULZ FULZ FULZ FULZ FULZ	86 DR DI DI DI DI DI DI DI DI DI DI DI DI DI	NUC1 PI FII SFUI	PLC2 PLC2 PLC2 PLC3 SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02	Bag P
	-11-				- 18
B	8				-160
					-140
69 . 911	ē				-120
					-10
rc 42					- 8
.ndole 400TopSpin					- 69
nyl)-lH-i l3 {F:\Av					-40
1-(4-fluorophe F19CPD.liv CDC					-2-

DW 6.650 usec DE E.00 usec TE 1,0000000 sec dil 0.0000000 sec dil2 0.0000000 sec dil2 0.0000000 sec MUCL 138.00 usec Pli 138.00 usec	NAI-5-F	NAME EXPRO PROFNO PROFNO Date. TUSTHUM PULPROG TULFROG TULFROG TULFROG TULFROG TULFROG TULFROG TULFROG TULFROG TULFROG TULFROG	NAI-5-F 452 20110316 2.38 2.38 2.38 2.38 2.38 2.31072 131072 131072 131072 131072 131072 131072 15187.959 Hz 0.573639 Hz 0.573639 Hz
		TE TE D1 d11 d12 tD0 NUC1 F1 F1 SF01	6,000 usec 2,000 usec 2,0000000 sec 0,00002000 sec 0,00002000 sec 1 1 1 18:00 usec 18:00 usec 19:00 usec 19:00 usec 19:00 usec 19:00 usec 19:00 usec 19:00 usec 19:00 usec 19:00 usec 10:00 usec

mdd -180 -160 -140 -120 -100 89 89-4 -20

	NAME NALE EXPNO EXPNO PROCNO Date462 1000 11000 11000 11000 100000 100000 1000000	DW 6.650 usec DE 6.650 usec 6.00 usec 11 1.000000 sec d11 0.0300000 sec d12 0.00002000 sec d12 0.00002000 sec	NUCL CHANNEL fl	CHANNEL F2	. ⊢ <u>E</u>
	2 H H H P P H H P O 2 L O B C L		8 <i>2</i> 5 14 14 17	*OZUNU ONOZONOU	đ
~~~	ц ф				-180
$\bigotimes$	NAL				-160
					-140
59.021	1				-120
46					-100
in) rc					- 8
indole Av400TopSp					- 69
cl3 (F:\					-40
6-fluoro-l-ph F19CPD.liv CD					-20











	NAI-4'.5-F 20110316 4.324 20110316 4.34 4.34 4.34 20110316 11072 20110316 11072 0.871478 111072 0.871478 146,00 1200000 sec 0.000000 sec 0.00000 sec 0.00000 sec 1.1000000 sec 0.00000 sec 1.1000000 sec 0.00000 sec 1.1000000 sec 0.00000 sec 0.00000 sec 1.1000000 sec 0.00000 sec 0.00000 sec 0.00000 sec 0.00000 sec 1.1000000 sec 0.00000 sec 0.000000 sec 0.00000 sec 0.000000 sec 0.00000 sec 0.0000000 sec 0.0000000000 sec 0.00000000000000000000000000000000000	
	CEAN S MIT CEAN	mdd
	NAME EXTRACTA PROCON PROCON FINE PROCON FINE PROCON FINE FINE FINE FINE FINE FINE FINE FIN	-180
₽ [−] ,	6	-160
		-140
-172*54 		-120
		-100
ole rc 48		- 89
/1)-1H-ind 00TopSpin]		- 9
Eluoropheny L3 (F:\Av40		-40
5-fluoro-1-(4-1 F19CPD.liv CDC		-20



![](_page_39_Figure_0.jpeg)

	PE ISB-1-F 2010511 2000 341 341 341 341 56.37 16.37 16.37 16.37 16.37 16.37 16.37 11.072 13.072 13.072 13.072 13.072 13.072 12.962 Hz 0.57363 Hz 0.57363 Hz 0.57363 Hz 0.57363 Hz 0.670 Usec 0.670 Usec 0.000000 sec	C 0.0002000 sec 1 19F 19F 19F 19F 19F 19F 19F 19F	PFG2 CHANNEL f2 ===================================	E E
	NAM EXP PROP PROP PROP PROP PROP PROP PROP PR	TTT 114 114 114 114 114 114	CPD CPD PLL2 PLL2 PLL2 PLL2 SPL2 SPL3 SPL3 SPL3 SPL3 SPL3 SPL3 SPL3 SPL3	d 08
R	3			-160 -18
u-{]				-140
00.71	t			-120
				-100
1) rc 34				- 89
lazepine 400TopSpir				- 99
benzo[b,f 13 {F:\Av				- 9
I-fluoro-5H-di F19CPD.liv CDC				-20

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

15.778 15.778 15.778 15.778 15.778 15.78 15.78 15.78 15.78 15.78 15.78 15.78 15.78 15.78 15.78 15.78 10.17363 Hz 10.17363 Hz 10.1736 Hz 10.1756 Hz 10.1756 Hz 10.1756 Hz 10.1756 Hz 10.1756 Hz 10.1756 Hz 10	D1 1.0000000 Sec d11 0.33000000 Sec d12 0.00002000 Sec TD0 1	CHANNEL F1 CHANNEL F1 19F NUC1 19F P11 18.00 uasc P11 376.4608844 MHz	CHARNEL f2 ***********************************	induction addition description descripting descripting descripting descripting descripting
SdotnobAW.: 1 STOO ATT. MAAS				بياني معارفة معاملتهم المسترية والمسترية والمسترية والمسترية والمسترية والمسترية والمسترية والمسترية والمسترية

2-fluoro-5H-dibenzo[b,f]azepine
F19CPD.liv CDCl3 (F:\Av400TopSpin) rc 18

mdd

-180

-160

-140

-120

-100

8

8

40

-20

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

	ISB~3-F 111 20110607 11.57 20110607 11.57 11.57 11.57 2.2511497 2.2511497 1.21072 1.21072 1.21072 1.21072 1.21072 1.21072 1.21072 1.21072 1.2000000 sec 0.00002000 sec 0.00002000 sec 0.00002000 sec	CHANNEL fl19F 19F 18,00 usec -6,00 dB 376,4608844 MHz	CHANNEL £2	udd
	NAME EXPNO FROCNO Pate_ Time FROBHD FROBHD FROBHD SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOL	NUCL PLI PLI SFOL	CPDPRG2 CPDPRG2 PUC2 PUC2 PUC2 PUC2 SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF0	-180
	B IZ			-160
L	L.			-140
ÞE.ÞII				-120
				-100
) rc 11			an a	08-
azepine 100TopSpin				09-
oenzo[b,f] 13 {F:\Av4				-40
3-fluoro-5H-dil F19CPD.liv CDC				

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

Hz sec sec sec dB MHz MHz MHz MHz MHz MHz MHz	mdd
ISB-1,7-F 1322 5 mm QNP 1H/13 5 mm QNP 1H/13 5 mm QNP 1H/13 131072 0.8716788 0.8716788 0.8716788 0.8716788 0.8716788 0.8716788 0.8716788 0.8716788 0.8716788 0.8716788 0.8716788 11072 1100 0.00002000 0.00002000 0.00002000 1195 1295 1300 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00000000 0.000000000 0.00000000	-180
F NAME EXPNO PROCNO Date_ Time FIDRES SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT NUCI PULPROG DW DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TDD DE TD DE TD DE TD DE TD DE TDD DE TDD DE TDD DE TDD DE TDD DE TDD DE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE TDDDE	-160
ST 12	-140
28.9II	-120
	-100
0 0	- 8-
Jazepine opSpin) rc	- 99-
dibenzo[b,f [F:\Av400T	-40
1,7-difluoro-5H- F19CPD.liv CDCl3	-20

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

2,8-difluoro-5H-dibenzo[b,f]azepine F19CPD.liv CDCl3 {F:\Av400TopSpin} rc 17	TE.SSI	
	NAME EXPINO FROCHOD FROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PROCHOD PR	58-2,8-F 171 171 171 171 171 175-20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20 1
	NUCI P1 P1 SFOL 376.	. fl 19F 18.00 une -6.00 db 4608844 MHz
	CEDDFEG2 CPDFFG2 CPDFFG2 CPD2 PCC2 PCC2 PL2 PCC2 PL2 PCC2 PCC2 PCC2	valtz16 valtz16 80.00 une -3.00 dB -3.00 dB -0.00 dB -0.0
n de la seconda de l La seconda de la seconda de	the product a sub-state of the second field of the determinant of the second s	

mdd

-180

-160

-140

-120

-100

- 89

- ⁶

-40

-20

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

azepine pSpin) rc 24 66	24 F NAME ISB-3,7-F NAME ISB-3,7-F NAME ISB-3,7-F EXPNO 191 PROCNO 191 PROCNO 20110606 111 PROCNO 20110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110606 1110700 1110700 1110700 1110700 1110700 1100000000	DUNYENT CUCLS NS 16 16 DS 75187,969 Hz SNH 75187,969 Hz 75187,969 Hz 7298,2 0 8 C 0.9716798 sec RG 7298,2 0 DN 6.650 usec DE 6.00 usec 1E294,3 K	D1 1.0000000 sec d11 0.0300000 sec d12 0.0300000 sec d12 0.0302000 sec n1 19 NUC1 19 P1 18.00 usec	FLI 376.460844 MHE SFO1 376.460844 MHE CPDPRG2 MAILZIE NUC2 11 PCPD2 80.00 USEC PL2 -3.00 dB PL12 400.1316605 MHz SF02 400.1316605 MHz SF02 800.00 MHz MDW EM	1.00 USB 0.30 Hz 0.30
3,7-difluoro-5H-dibenzo[b,f]azepine ?19CPD.liv CDCl3 {F:\Av400TopSpin} rc 24					

-180 ppm

-160

-140

-120

-100

- 89

- 69

- 4

-20

![](_page_56_Figure_0.jpeg)

![](_page_57_Figure_0.jpeg)

# 4. References

- Pretsch, E.; Bühlmann, P.; Affolter, C., *Structure Determination of Organic Compounds: Tables of Spectral Data.* Third Completely Revised and Enlarged English Edition ed.; Springer: Berlin, Heidelberg, New York, HongKong, London, Mailand, Paris, Tokyo, 2000; p 421.
- 2. Ma, D.; Cai, Q., L-proline promoted Ullmann-Type Coupling Reactions of Aryl Iodides with Indoles, Pyrroles, Imidazoles or Pyrazoles. *SYNLETT* **2004**, (1), 0128-0130.
- 3. Varma, R. S.; Whisenant, L. K.; Boykin, D. W., Synthesis of Some Substituted 5H-Dibenz[*b*,f]azepine as Potent Antimalarials. Journal of Medicinal Chemistry 1969, (12), 913-914.
- 4. Tomakov, G. P.; Grandberg, I. I., Rearrangement of 1-Aryl indoles to 5H-Dibenz[b,f]azepines. Tetrahedron 1995, 51, (7), 2091-2098.