Diastereoselective Control of Intramolecular Aza-Michael Reactions Using Achiral Catalysts

Cheng Zhong, Yikai Wang, Alvin W. Hung, Stuart L. Schreiber, Damian W. Young*Chemical Biology Program, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, 02142Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA, 02138
dyoung@broadinstitute.org
I. Material and Methods S2
II. Experimental procedures S3-S39
A. General procedure for preparation of substrate 1a S3
B. General procedure for diastereoselective intramolecular aza-Michael reaction S4
C. Condition screening for diastereoselective intramolecular aza-Michael reaction S5
D. Cbz removal and relative stereochemistry studies of morpholines $\mathbf{2 h}, \mathbf{2 m}$, S6-S13
E. Preparation of the other intramolecular aza-Michael reaction substrates 3 S14-18
F. Cbz removal and relative stereochemistry of \mathbf{N}-containing heterocycles 4 S19-42
G. Preliminary mechanistic probing of the intramolecular aza-Michael reaction S43
H. Syntheses of more complex hetero bicyclic molecules S44
III. Compounds Characterization S45-S71
IV. ORTEP Drawing of the crystal structures S72
V. NMR spectra S73-S230

Material and Methods.

Except as otherwise noted, all reactions were carried out under Argon protection. All reaction solvents were dispensed from a solvent purification system wherein solvents are passed through a packed activated alumina column. NMR spectra were recorded at 500 MHz and 600 MHz using Varian I-500 instrument. Chemical shifts for proton NMR spectra are reported in parts per million downfield from tetramethylsilane and were referenced to residual protonated solvent $\left(\mathrm{CHCl}_{3}: \mathrm{d} 7.26, \mathrm{C}_{6} \mathrm{H}_{6}: \mathrm{d} 7.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: D 5.32). Chemical shifts for carbon NMR spectra are reported in parts per million downfield from tetramethylsilane and referenced to protonated solvent $\left(\mathrm{CHCl}_{3}: \mathrm{d}\right.$ $77.0, \mathrm{C}_{6} \mathrm{H}_{6}: \mathrm{d} 128.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{d} 54.0$). Data are represented as follows: chemical shift (multiplicity [bs $=$ broad singlet, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet], coupling constant J in Hertz, integration). High-resolution mass spectra were obtained through the Harvard University mass spectrometry facility. Infrared spectra were obtained with a Nicolet IR100 FTIR from Thermo Scientific. Optical rotations were obtained using digital polarimeter Autopol IV (Rudolph research Analytical) with a 1 mL cell and a 1 dm path length. Microwave heating was performed using Explorer ${ }^{\circledR}-48$ positions, CEM. All reactions were magnetically stirred and monitored by thin-layer chromatography (TLC) using E. Merck silica gel 60 F254 precoated plates (0.25 mm). Flash chromatography was performed either with the indicated solvent on E. Merck silica gel 60 (230-400 mesh) or using a CombiFlash companion system (Teledyne ISCO, Inc.) with pre-packed FLASH silica gel columns (Biotage, Inc.). HPLC purification was performed on a Waters mass-directed autopurification system. The system consisted of 2767 injection/collection sample manager, a 2525 binary gradient high pressure LC pump, two 515 pumps to deliver makeup and dilution flow, a column fluidic organizer (CFO), a 2996 photodiode array detector, and a ZQ quadropole MS equipped with an electrospray interface. All of the instrumentation was controlled by MassLynx and FractionLynx software versions 4.1. All reagents were obtained from commercial sources and used without further purification.

Experimental Procedures.

A. General procedure for preparation of substrate $\mathbf{1}$ (1a as representative example)

Into an oven dried round bottom flask equipped with a magnetic stir bar was added Z-L-phenylalaninol (570 $\mathrm{mg}, 2.0 \mathrm{mmol}$) in dry DMF ($20 \mathrm{~mL}, 0.1 \mathrm{M}$) followed by allylbromide ($960 \mathrm{mg}, 8.0 \mathrm{mmol}, 4.0$ equiv.). The solution was cooled to $0^{\circ} \mathrm{C}$ and stirred for an additional 15 minutes then $\mathrm{KO} t \mathrm{Bu}$ ($246 \mathrm{mg}, 1.1$ equiv.) was added portion-wise through the septum over 10 minutes. The reaction was then warmed up to room temperature over 2 hours. Once the TLC indicated the disappearance of the starting material(~ 2 hours), the mixture was diluted with EtOAc (100 mL). The organic phase was washed by HCl solution (1.0 M), saturated NaHCO_{3} (aq.) and brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane 5:95) was then applied to give the allyl ether intermediate 600 mg , yield 92%.

The allyl ether ($600 \mathrm{mg}, 1.85 \mathrm{mmol}$) was then dissolved in dichloromethane ($26 \mathrm{ml}, 0.07 \mathrm{M}$). MVK (647 mg , $9.25 \mathrm{mmol}, 5.0$ equiv.) under argon protection. Next, Hoveyda-Grubbs II catalyst ($34 \mathrm{mg}, 0.055 \mathrm{mmol}, 0.02$ equiv.) was added to the reaction mixture. The reaction mixture was then warmed up to $45^{\circ} \mathrm{C}$ and kept stirring for 4 hours, until the TLC indicated the consumption of the starting material. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane 20:80) was then applied to give the intramolecular aza-Michael precursor 1a 624 mg , yield 93%. All other substrates in Table 1, except $\mathbf{1 m}$, were prepared from corresponding amino alcohols and vinyl ketones, following the same procedure, $79 \% \sim 90 \%$ yields were received.

Z-L-serine ($506 \mathrm{mg}, 2.0 \mathrm{mmol}$) was dissolved in dry THF ($20 \mathrm{~mL}, 0.1 \mathrm{M}$) and mix with methyl allyl carbonate ($300 \mathrm{mg}, 2.6 \mathrm{mmol}, 1.3$ equiv.) and palladium catalyst ($115 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.05$ equiv.). The solution was kept under argon protection and heated to $60^{\circ} \mathrm{C}$ for 10 hours. Once TLC indicated the completion of the reaction, the mixture was diluted with EtOAc (100 mL). The organic phase was washed by HCl solution (1.0 M), saturated NaHCO_{3} (aq.) and brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give a residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane 10:90) was then applied to give the allyl ether intermediate 540 mg , yield 92%.
The allyl ether ($540 \mathrm{mg}, 1.85 \mathrm{mmol}$) was dissolved in dichloromethane ($26 \mathrm{ml}, 0.07 \mathrm{M}$) and methyl vinyl ketone ($647 \mathrm{mg}, 9.25 \mathrm{mmol}, 5.0$ equiv.) was added under argon atmosphere. Next, Hoveyda-Grubbs II catalyst (34 mg , $0.055 \mathrm{mmol}, 0.02$ equiv.) was added to the reaction mixture. The reaction mixture was then heated to $45^{\circ} \mathrm{C}$ and kept stirred for an additional 4 hours until the TLC indicated the completion of reaction. The solvent was
removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane 20:80) was then applied to give 554 mg , (90% yield) of the intramolecular aza-Michael precursor $\mathbf{1 m}$.

B. General procedure for intramolecular aza-Michael reaction

Pd (II) catalysis of intramolecular aza-Michael reaction of 1a: To an oven dried flask at room temperature, 1a ($73 \mathrm{mg}, 0.02 \mathrm{mmol}$) was dissolved in dry dichloromethane $(0.1 \mathrm{M})$ under argon atmosphere. Next, $(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}(5.0 \mathrm{mg}, 0.1$ equiv.) was added and stirring was continued for an additional 4 hours. The reaction mixture was then filtered using diethyl ether through a pad of silica to remove the catalyst. The resulting filtrate was condensed by vacuum and applied to flash silica gel chromatography (Ethyl Acetate/ Hexane $15: 85$) to give 65 mg , (89% yield) of the intramolecular aza-Michael product $\mathbf{2 a}$-cis. The ratio of diastereomers (cis/trans) was 93:7, based on the NMR integration.
Brønsted acid catalysis of intramolecular aza-Michael reaction of 1a: To an oven dried flask equipped with magnetic stir bar was dissolved $1 \mathbf{1 a}(73 \mathrm{mg}, 0.02 \mathrm{mmol})$ in dry dichloromethane $(0.1 \mathrm{M})$ under argon atmosphere. The solution was kept at low the temperature $\left(-20^{\circ} \mathrm{C}\right)$ for 10 minutes before $10 \mu \mathrm{l}$ of TfOH solution (DCM, $0.2 \mathrm{M}, 0.1$ equiv.) was added. The reaction mixture was stirred for 5 hours until TLC indicated the complete consumption of the starting material and $10 \mu \mathrm{l}$ of triethylamine (0.1 equiv.) was added in the reaction mixture before warming up to room temperature. The reaction mixture was then filtered through a pad of celite using diethyl ether to remove the catalyst. The resulting filtrate was condensed in vacuo to provide the crude residue. Purification using flash silica gel chromatography (Ethyl Acetate/ Hexane 15:85) provided 68 mg (93% yield) of the intramolecular aza-Michael product 2a-trans. The ratio of diastereomers (cis/trans) was 9:91, based on the NMR integration.

C. Condition screening for diastereoselective intramolecular aza-Michael reaction ${ }^{[a]}$

$$
\begin{aligned}
& \mathrm{R}=3,5- \\
& \mathrm{R}=\mathrm{H} .
\end{aligned}
$$

ent-L-5

entry	sol.	cat. (0.2 eq.)	$\begin{gathered} \text { co-cat. } \\ \text { (0.2 eq.) } \\ \hline \end{gathered}$	$\begin{gathered} \text { temp } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	time (h)	$\begin{aligned} & \text { conv. } \\ & (\%)^{b} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { yield } \\ (\%)^{c} \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { d.r. } \\ {\text { (cis/trans })^{d}}^{2} \end{gathered}$
1	DMF	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	--	rt	2 (8)	57 (74)	--	--
2	CHCl_{3}	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	--	rt	8	60	--	--
3	CHCl_{3}	cat-1	$\mathrm{PhCO}_{2} \mathrm{H}$	rt	12	--	--	--
4	DMF	cat-1	$\mathrm{PhCO}_{2} \mathrm{H}$	rt	8	12	--	--
5	MeOH	cat-1	$\mathrm{PhCO}_{2} \mathrm{H}$	rt	8	84^{e}	--	--
6	CHCl_{3}	ent-cat-1	$\mathrm{PhCO}_{2} \mathrm{H}$	rt	12	--	--	--
7	others ${ }^{f}$	cat-1	$\mathrm{PhCO}_{2} \mathrm{H}$	rt	12	--	--	--
8	DMF	others ${ }^{\text {g }}$	--	rt	12	<15	--	--
9	THF	$\mathrm{KO}^{\prime} \mathrm{Bu}$ (1.0 eq.)		-78	8	93	54	2:1
10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$(\mathrm{MeCN})_{2} \mathbf{P d C l}_{2}(0.1)$	--	rt	4	>95	89^{i}	93:7
11	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}$	L-1 ${ }^{h}$	rt	12	--	--	--
12	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}$	$e n t-\mathrm{L}-1{ }^{h}$	rt	12	--	--	--
13	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	cat.	AgOTf	rt	12	--	--	--
14	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}$	L-3 ${ }^{h}$	rt	12	13	--	--
15	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}$	$e n t-\mathrm{L}-3^{h}$	rt	12	16	--	--
16	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}$	others ${ }^{h}$	rt	12	--	--	--
17	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	TfOH (0.1)	--	rt	0.5	>95	93	15:85
18	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	TfOH (0.1)	--	-20	5	>95	92^{i}	9:91

[a] Compound 1a ($73 \mathrm{mg}, 0.02 \mathrm{mmol}$) was dissolved in solvents $(0.1 \mathrm{M})$ under argon atmosphere. The reactions were monitored by TLC; [b] based on the consumption of 1a; [c] NMR yields with 1,3,5-trimethoxybenzene as internal standard; [d] Determined by NMR; [e] New product was detected, instead of the aza-Michael adduct. [f] other solvents include EtOAc, THF, Toluene, MeCN, i PrOH. [g] other catalysts included cat-2 to cat 5, with their enantiomers. [h] AgOTf (0.2equiv.) was applied to activate the Pd (II) species. [i] isolated yield.

D. Cbz removal and relative stereochemistry studies of morpholines $\mathbf{2 h}$,

The relative stereochemistry could not be identified for the Cbz-protected morpholines 2. NMR studies were carried out for both isomers and no NOE was observed. In order to clarify the relative stereochemistry of the aza-Michael reaction, both purified diastereomers ($\mathbf{2 h}$-cis and $\mathbf{2 h}$-trans) were subjected to hydrogenation using palladium (on carbon) (0.2 eq .) under hydrogen atmosphere at room temperature. The Cbz protecting group was completely removed aver 1 hr and quantitative yields were obtained for both isomers without epimerization on C-6 position. NOE studies were subsequently performed on the N-H compounds to identify the cis and trans relationships, as shown below.

2h'-cis ${ }^{1} \mathrm{HNMR}$

2h'-cis ${ }^{13} \mathrm{CNMR}$

HSQC

1D-NOE 3.41 (H-3)

1D-NOE 4.05 (H-5)

2h'-trans
${ }^{1}$ H-NMR

${ }^{13}$ C-NMR

HSQC

NOE-3.2 (H-3)

NOE-3.9 (H-5)

2m'-cis
${ }^{1}$ H-NMR

${ }^{13}$ C-NMR

HSQC

NOE-3.7

2m'-trans

The ${ }^{1} \mathrm{H}$-NMR signals of H-3 and H-5 in trans isomer overlaps with each other in all the NMR solvents available, no NOE experiment was performed.

E. Preparation of the other intramolecular aza-Michael reaction substrates 3

1. 3 a

To an oven dried round bottom flask equipped with magnetic stir bar was added Z-L-phenylalanine (600 mg , 2.0 mmol) in dry DMF ($20 \mathrm{ml}, 0.1 \mathrm{M}$) followed by allylbromide ($480 \mathrm{mg}, 4.0 \mathrm{mmol}, 2.0$ equiv.) at room temperature. Next, solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($339 \mathrm{mg}, 1.5$ equiv.) was added in one portion through the septum. The reaction was stirred for 8 hours at room temperature. Once the TLC indicated consumption of the starting material, the mixture was diluted with EtOAc (100 mL) and the organic phase was washed by HCl solution (1.0 M), saturated NaHCO_{3} (aq.), brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/Hexane 5:95) provided 665 mg , (95% yield) of the allyl ester intermediate.
The allyl ester ($665 \mathrm{mg}, 1.96 \mathrm{mmol}$) was dissolved in dichloromethane ($28 \mathrm{ml}, 0.07 \mathrm{M}$) and methyl vinyl ketone ($549 \mathrm{mg}, 7.84 \mathrm{mmol}, 4.0$ equiv.) was added under argon atmosphere. Next, Hoveyda-Grubbs II catalyst (34 mg , $0.055 \mathrm{mmol}, 0.02$ equiv.) was added and the reaction mixture was warmed up to $45^{\circ} \mathrm{C}$. Stirring was continued for 4 hours, until the TLC indicated consumption of the starting material. The solvent was removed under reduced pressure to give a residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane 25:75) was then applied to give 707 mg , (93% yield) of the intramolecular aza-Michael precursor 3a

Other substrates in Table 1 were all prepared from the corresponding amino alcohols and vinyl ketones, following the same procedure, $79 \% \sim 90 \%$ yields were received.
2. 3b

To an oven dried round bottom flask equipped with magnetic stir bar was added Z-L-phenylalanine (600 mg , 2.0 mmol) and allylamine ($150 \mathrm{mg}, 2.6 \mathrm{mmol}, 1.3$ equiv.) in dry $\mathrm{DCM}(20 \mathrm{ml}, 0.1 \mathrm{M})$. The reaction mixture was cooled by ice bath under argon atmosphere. Next, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) ($310 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv.) was added dropwise over 5 minutes. The reaction was stirred for 5 hours at 0 ${ }^{\circ} \mathrm{C}$. Once TLC indicated consumption of the starting material, the mixture was diluted with EtOAc (100 mL). The organic phase was washed by HCl solution $(1.0 \mathrm{M})$, saturated NaHCO_{3} (aq.), brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/Hexane 30:70) provided 642 mg , (95% yield) of allyl amide intermediate The allyl amide ($642 \mathrm{mg}, 1.9 \mathrm{mmol}$) was then dissolved in dichloromethane ($28 \mathrm{~mL}, 0.07 \mathrm{M}$). Next methyl vinyl ketone ($532 \mathrm{mg}, 7.6 \mathrm{mmol}, 4.0$ equiv.) was added under an argon atmosphere. Hoveyda-Grubbs II catalyst ($34 \mathrm{mg}, 0.055 \mathrm{mmol}, 0.02$ equiv.) was added and the reaction mixture was then warmed up to $45{ }^{\circ} \mathrm{C}$ while
stirring was continue for 6 hours, when the TLC indicated complete consumption of the starting material. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane $25: 75$) provided 684 mg , (95% yield) of the intramolecular aza-Michael precursor 3b.
3. 3 c

To an oven dried round bottom flask equipped with magnetic stir bar, the allyl amide ($642 \mathrm{mg}, 1.9 \mathrm{mmol}$) and methyl 2-bromoacetate ($315 \mathrm{mg}, 2.1 \mathrm{mmol}, 1.1$ equiv.) were dissolved in dry DMF ($20 \mathrm{ml}, 0.1 \mathrm{M}$). The reaction mixture was cooled by ice bath under an argon atmosphere. Next, $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($303 \mathrm{mg}, 2.1 \mathrm{mmol}, 1.1$ equiv.) was added to the mixture in one portion. The reaction was stirred for 1 hour at $0{ }^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for an additional 4 hours. Once TLC indicated consumption of the starting material, the mixture was diluted with $\operatorname{EtOAc}(100 \mathrm{~mL})$. The organic phase was washed by HCl solution $(1.0 \mathrm{M})$, saturated NaHCO_{3} (aq.), brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/Hexane 30:70) provided 701 mg , (90% yield) of the allyl dipeptide intermediate.
The allyl dipeptide ($701 \mathrm{mg}, 1.7 \mathrm{mmol}$) was then dissolved in dichloromethane ($28 \mathrm{~mL}, 0.07 \mathrm{M}$) and methyl vinyl ketone ($476 \mathrm{mg}, 6.8 \mathrm{mmol}, 4.0$ equiv.) was added in under argon. Hoveyda-Grubbs II catalyst (30 mg , $0.050 \mathrm{mmol}, 0.02$ equiv.) was then added and the reaction mixture was warmed up to $45^{\circ} \mathrm{C}$ and kept stirring for 6 hours, when the TLC indicated the consumption of the starting material. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane 25:75) was then applied to give 616 mg , (90% yield) of the intramolecular aza-Michael precursor 3c
4. 3d

3d
To an oven dried round bottom flask equipped with magnetic stir bar was added Z-L-phenylalaninol (570 mg , 2.0 mmol), nosylamine ($485 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv.), with and PPh_{3} ($786 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv.) in dry THF ($20 \mathrm{ml}, 0.1 \mathrm{M}$). The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ by ice bath under argon and diethyl azodicarboxylate (DEAD) ($522 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was added in the reaction mixture drop-wise over 5 minutes. The reaction was stirred for 2 hours at $0^{\circ} \mathrm{C}$, and then warm up to room temperature over another hour. Once TLC indicated the consumption of the starting material, the mixture was diluted with EtOAc (100 mL). The organic phase was washed by HCl solution (1.0 M), saturated NaHCO_{3} (aq.) and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel
chromatography (Ethyl Acetate/Hexane 50:50) was applied to give the 797 mg , (85% yield) of the Nosyl amine intermediate.

The nosyl amine ($797 \mathrm{mg}, 1.7 \mathrm{mmol}$) and allylbromide ($408 \mathrm{mg}, 3.4 \mathrm{mmol}, 2.0$ equiv.) were then dissolved in dry DMF ($20 \mathrm{~mL}, 0.1 \mathrm{M}$) and cooled $0{ }^{\circ} \mathrm{C}$. Next, $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($351 \mathrm{mg}, 1.5$ equiv.) was added in one portion. The reaction was stirred for 4 hours and gradually warmed up to room tempeature. Once TLC indicated the consumption of the starting materials, the mixture was diluted with EtOAc $(100 \mathrm{~mL})$. The organic phase was washed by HCl solution $(1.0 \mathrm{M})$, saturated NaHCO_{3} (aq.) and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was put under reduced pressure to the crude residue. Flash silica gel chromatography (Ethyl Acetate/Hexane $30: 70$) was applied to give 796 mg , (92% yield) of the allyl nosyl amine intermediate.
The allyl amide ($796 \mathrm{mg}, 1.56 \mathrm{mmol}$) was then dissolved in dichloromethane ($22 \mathrm{ml}, 0.07 \mathrm{M}$). Next methyl vinyl ketone ($437 \mathrm{mg}, 6.24 \mathrm{mmol}, 4.0$ equiv.) was added in under argon. Hoveyda-Grubbs II catalyst (34 mg , $0.055 \mathrm{mmol}, 0.03$ equiv.) was added and the reaction mixture was then warmed up to $45^{\circ} \mathrm{C}$ and kept stirring for 5 hours when the TLC indicated the consumption of the starting material. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane 35:65) was then applied to give 799 mg , yield (93% yield) of the intramolecular aza-Michael precursor 3d.
5. 3e

To an oven dried round bottom flask equipped with magnetic stir bar was dissolved Z-L-phenylalaninol (570 $\mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(655 \mathrm{mg}, 2.5 \mathrm{mmol}, 1.3$ equiv.) in dry $\mathrm{DCM}(20 \mathrm{ml}, 0.1 \mathrm{M})$. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ by ice bath for 30 minutes before CBr_{4} ($850 \mathrm{mg}, 2.6 \mathrm{mmol}, 1.3$ equiv.) was added. The reaction was stirred for 1 hour at $0{ }^{\circ} \mathrm{C}$, and then warmed to room temperature over an additional hour. Once TLC indicated the consumption of the starting materials, the solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/Hexane 10:90) was applied to give 666 mg , (96% yield) the bromide intermediate.

The bromide ($666 \mathrm{mg}, 1.92 \mathrm{mmol}$) was then dissolved in DMF ($10 \mathrm{ml}, 0.2 \mathrm{M}$) and allyl mercaptan ($156 \mathrm{mg}, 2.1$ mmol, 1.1 equiv.) was added. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(397 \mathrm{mg}, 2.25 \mathrm{mmol}, 1.5$ equiv.) was added in one portion. The reaction was stirred for 8 hours at room temperature. Once TLC indicated the consumption of the starting materials, the mixture was diluted with EtOAc $(100 \mathrm{~mL})$. The organic phase was washed by HCl solution (1.0 M), saturated NaHCO_{3} (aq.) and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was put under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/Hexane $30: 70$) was applied to give 602 mg , (92% yield) of the allyl thioether intermediate

The allyl thioether intermediate ($602 \mathrm{mg}, 1.77 \mathrm{mmol}$) and methyl vinyl ketone ($620 \mathrm{mg}, 8.85 \mathrm{mmol}, 5.0$ equiv.) were dissolved in DCM ($17 \mathrm{ml}, 0.1 \mathrm{M}$) under argon. Hoveyda-Grubbs II catalyst ($219 \mathrm{mg}, 0.35 \mathrm{mmol}, 0.2$ equiv.) was added to the mixture in two portions over 2 hours and the reaction mixture was warmed up to $45{ }^{\circ} \mathrm{C}$
and stirred an additional 8 hours. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane 20:80) was then applied to give 508 mg (75% yield) of the intramolecular aza-Michael precursor 3e.
6. $3 f$

To an oven dried round bottom flask, was added thioether $\mathbf{3 e}(300 \mathrm{mg}, 0.78 \mathrm{mmol})$ in $\mathrm{DCM}(16 \mathrm{~mL}, 0.05 \mathrm{M})$ and the temperature was cooled to $0{ }^{\circ} \mathrm{C}$. Next, m-CPBA ($268 \mathrm{mg}, 1.56 \mathrm{mmol}, 2.0$ equiv.) was added to the mixture in 3 portions over 30 minutes. The reaction was kept at $0{ }^{\circ} \mathrm{C}$ by ice bath for 2 hours until TLC indicated the disappearance of the starting material. Saturated $\mathrm{NaS}_{2} \mathrm{O}_{3}$ solution $(10 \mathrm{~mL})$ was added to quench the reaction and 100 mL of DCM was added, after which the reaction mixture was warmed to room temperature. The organic phase was washed by HCl solution (1.0 M), saturated NaHCO_{3} (aq.) and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/Hexane 30:70) was applied to give 288 mg , (89% yield) of the sulfone substrate 3f.

7. 3 g

The Grignard reagent in THF solution ($6 \mathrm{mmol}, 0.5 \mathrm{M}, 12 \mathrm{~mL}$) was prepared according to the literature from 5-bromopent-1-ene and Magnesium. At $0{ }^{\circ} \mathrm{C}$, the Grignard was added in to benzylaldehyde THF solution (5 $\mathrm{mmol}, 0.5 \mathrm{M} 10 \mathrm{ml}$), under argon atmosphere. The reaction mixture was gradually warmed to room temperature and stirred for an additional 4 hours. Next, HCl aqueous solution $(5 \mathrm{~mL}, 1.0 \mathrm{M})$ was added slowly to quench the reaction. The mixture was diluted with EtOAc (200 mL) and washed by saturated NaHCO_{3} (aq.) and brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/Hexane 20:80) afforded $836 \mathrm{mg}, 95 \%$. of the alcohol. The alcohol ($863 \mathrm{mg}, 4.75 \mathrm{mmol}$) was dissolved in toluene $(0.2 \mathrm{M})$ at room temperature and DBU (1083 mg , $7.13 \mathrm{mmol}, 1.5$ equiv.) was added under argon. Next , $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}(1960 \mathrm{mg}, 7.13 \mathrm{mmol}, 1.5$ equiv.) was added in the solution. The reaction mixture was warmed up to $50{ }^{\circ} \mathrm{C}$ and kept stirring for 8 hours, until the complete consumption of the alcohol. Two layers were formed and the top layer was directly applied to flash silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $\left.5: 95\right)$ to provide $763 \mathrm{mg}(80 \%$ yield $)$ of the azide.

The azide ($763 \mathrm{mg}, 3.8 \mathrm{mmol}$) was then dissolved with THF ($19 \mathrm{~mL}, 0.2 \mathrm{M}$) and $\mathrm{PPh}_{3}(1493 \mathrm{mg}, 5.7 \mathrm{mmol}, 1.5$ equiv.) was added at room temperature. Next, 5 mL of water was added and the temperature was raised to $70{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction was cooled to room temperature and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ directly. The organic solvent was then removed under reduced pressure and the residue was redissolved in $\mathrm{DCM}(40 \mathrm{~mL}, 0.1 \mathrm{M})$.

Next, 20 mL of saturated NaHCO_{3} (aq.) was added, followed by $\mathrm{BnOCOCl}(969 \mathrm{mg}, 5.7 \mathrm{mmol}, 1.5$ equiv.) and the reaction was kept stirring for 5 hours at room temperature. The mixture was diluted with EtOAc (150 mL). The organic phase was washed by HCl solution (1.0 M), saturated NaHCO_{3} (aq.), brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/Hexane $15: 85$) was applied to give $821 \mathrm{mg}(70 \%$ yield) of the Cbz alkene.
The Cbz alkene ($821 \mathrm{mg}, 2.66 \mathrm{mmol}$) was then dissolved in dichloromethane ($38 \mathrm{ml}, 0.07 \mathrm{M}$) and methyl vinyl ketone ($745 \mathrm{mg}, 10.64 \mathrm{mmol}, 4.0$ equiv.) was added in under argon. Hoveyda-Grubbs II catalyst ($50 \mathrm{mg}, 0.081$ mmol, 0.03 equiv.) was added the reaction mixture was then warmed up $45{ }^{\circ} \mathrm{C}$ and kept stirring for 5 hours, until the TLC indicated consumption of the starting material. The solvent was removed under reduced pressure to give the crude residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane $35: 65$) provided 868 mg , (92% yield) of the intramolecular aza-Michael precursor 3d.

Substrates $\mathbf{3 h}, \mathbf{3 i}$ and $\mathbf{3 j}$ were prepared via the same procedure as $\mathbf{3 g}$.

F. Cbz removal and relative stereochemistry of \mathbf{N}-containing heterocycles 4

The relative stereochemistry could not be identified for the N -Cbz-protected heterocycles 4 . NMR studies were carried out for both cis and trans isomers. No NOE was observed in both cases. In order to elucidate the relative stereochemistry of the aza-Michael reaction, both purified diastereomers were separately subjected to $\mathrm{Pd} / \mathrm{C}(0.2$ eq.) hydrogenation. At room temperature, the Cbz protecting group was removed under hydrogen atmosphere (1.0 atm) after 1 hour. Quantitative yields were obtained for both isomers without epimerization on C-6 position. NOE studies were then performed to identify confirm the relative stereochemistry, as shown below.

1. 4 c

4c'-trans (${ }^{1} \mathrm{HNMR}$)

${ }^{13}$ CNMR

HSQC

1DNOE-3.71

1DNOE-3.75

$4 c^{\prime}-c i s+4 c^{\prime}-t r a n s$
${ }^{1}$ HNMR

${ }^{13}$ CNMR

HSQC

1DNOE 3.42 (H-5)

1DNOE 3.78 (H-3)

2. $4 d$

4d'-cis (${ }^{1} \mathrm{HNMR}$)

${ }^{13}$ CNMR

HSQC

1DNOE-3.17 (H-3)

1DNOE-3.02 (H-5)

4d'-trans $\left({ }^{1} \mathrm{HNMR}\right)$

${ }^{13}$ CNMR

HSQC

1DNOE-3.23 (H-5)
(pp

1DNOE-3.63 (H-3)

3. $4 e$

Hydrogenation was not successful for sulfide $4 \mathbf{e}$. It was then oxidized to sulfone $\mathbf{4 f}$ to carry out the stereochemistry studies as shown below.
4. $4 f$

4f'-cis (${ }^{1} \mathrm{HNMR}$)


```
4f'-cis ( }\mp@subsup{}{}{13}\textrm{CNMR}\mathrm{ )
```


HSQC

1DNOE-3.43 (H-5)

1DNOE-3.52 (H-3)

4f'- $\boldsymbol{\text { trans }}\left({ }^{1} \mathrm{HNMR}\right)$

${ }^{13}$ CNMR

1DNOE-3.57 (H-5)

1DNOE-3.97 (H-3)

5. 4 g

${ }^{13}$ CNMR

1DNOE-3.87 (H-2)

1DNOE-3.22 (H-6)

4g'-trans $\left({ }^{1} \mathrm{HNMR}\right)$

${ }^{13}$ CNMR

1DNOE-3.62 (H-6)

1DNOE-4.05 (H-2)

6. $4 h$

For $\mathbf{4 h}, \mathrm{Et}_{3} \mathrm{~N}$ (1.0 equiv.) was added in before the hydrogenation, in order to prevent the oligomerization of the product.

4h'-cis
${ }^{1}$ HNMR

${ }^{13}$ CNMR

1DNOE-3.91 (H-5)

1DNOE-4.43 (H-2)

4h'-trans
${ }^{1}$ HNMR

${ }^{13}$ CNMR

1DNOE-4.20 (H-5)
10

1DNOE-4.81 (H-2)
(90)

G. Mechanistic probing of the intramolecular aza-Michael reaction

In order to probe the reaction mechanism, several experiments were carried out. When 2a-cis was resubjected to both Pd (II) and TfOH conditions, it remained stable. Treatment of the strong Lewis acid BF_{3} only lead to the decomposition without forming any trans isomer. On the other hand, 2a-trans could be slowly transformed into cis isomer under both TfOH and BF_{3} conditions, although severe decomposition was detected in both cases. Finally, the Pd (II) complex did not transform the trans isomer into cis configuration. Although it has been extensively studied and discussed in the literature, the mechanism involving $\operatorname{Pd}(I I)$ catalysis is still not clear to account for the reactivity and stereoselectivity. Further mechanistic investigations concerning both pathways are ongoing in our laboratories and will be reported in due course.

Table 2. Probing the reaction mechanism ${ }^{[a]}$

[a] the reactions were conducted in DCM at room temperature with the 0.1 M concentration of 2a; [b] NMR yield; [c] determined by crude NMR.

H. Syntheses of more complex hetero bicyclic molecules

The nitro alkenes were prepared according to literature procedures. (D. Ranganathan, C. B. Rao, S. Ranganathan, A. K. Mehrotra, R. Iyengar, J. Org. Chem. 1980, 45, 1185-1189. G. Demicheli, R. Maggi, A. Mazzacani, P. Righi, G. Sartoria, F. Bigia, Tetrahedron Lett. 2001, 42, 2401-2403.)

Syntheses of 5a-cis and 5a-trans.
Morpholine 2a'-cis ($200 \mathrm{mg}, 0.87 \mathrm{mmol}$) was dissolved in THF ($9 \mathrm{~mL}, 0.1 \mathrm{M}$). Nitroethene ($76 \mathrm{mg}, 1.0 \mathrm{mmol}$, 1.2 equiv.) was then added to the solution and the reaction mixture was stirred for 5 hours at room temperature. Once TLC indicated consumption of the starting material the solvent was removed under reduced pressure to provide the crude residue. Flash silica gel chromatography (Ethyl Acetate/ Hexane 20:80) afforded 247 mg (93% yield) of the product 5a-cis (d.r. 91:9). 5a-trans was synthesized through the same procedure, in 90% yield with d.r. $>95: 5$.
Syntheses of 6a-trans.
Morpholine 2a'-trans ($200 \mathrm{mg}, 0.87 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(9 \mathrm{~mL}, 0.1 \mathrm{M})$ at room temperature and β nitro styrene ($155 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.2$ equiv.) was added and the reaction mixture was stirred for 2 days. Once TLC indicated consumption of the starting material the solvent was removed under reduced pressure. Flash silica gel chromatography (Ethyl Acetate/ Hexane $20: 80$) provided 305 mg (92% yield) of the product 6a-trans. When 2a'-cis was applied to the same condition, no reaction occurred over a week. Additional base promoted the decomposition of nitro alkene, without any desired product formation.

Compounds Characterization

(S, E)-benzyl (1-((4-oxopent-2-en-1-yl)oxy)-3-phenylpropan-2-yl)carbamate (1a).
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 85% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.19(\mathrm{~m}, 10 \mathrm{H}), 6.75(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=4.5 \mathrm{~Hz} 1 \mathrm{H}), 6.29(\mathrm{~d}, J=11.0,1 \mathrm{H}), 5.09$ $(\mathrm{s}, 2 \mathrm{H}), 4.17-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{bs}, 1 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.86(\mathrm{~m} 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.0,155.8,142.5,137.6,136.4,130.3,129.3,128.5,128.1,128.1,126.5,70.8$, 69.8, 66.7, 52.0, 37.7, 27.3; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 368.18564$, Found: 368.18537.

(S,E)-benzyl (1-((4-oxohex-2-en-1-yl)oxy)-3-phenylpropan-2-yl)carbamate (1b).
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 88% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.19(\mathrm{~m}, 10 \mathrm{H}), 6.77(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10(\mathrm{bs}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.16-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{bs}, 1 \mathrm{H}), 3.43-3.37(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2$ H), $1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=200.4,155.7,141.2,137.2,136.4$, 129.3, 129.1, 128.5, 128.1, 128.0, 126.5, 70.7, 69.8, 66.6, 51.9, 37.7, 33.7, 7.9; HRMS Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 382.20128$, Found: 382.19960 .

1c
(S,E)-benzyl (1-((4-oxo-4-phenylbut-2-en-1-yl)oxy)-3-phenylpropan-2-yl)carbamate (1c).
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 78\% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.94(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.21$ $(\mathrm{m}, 10 \mathrm{H}), 7.13(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dt}, J=15.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.17$ (m, 2 H), 4.09 (bs, 1 H), 3.50-3.44 (m, 2 H), 2.96-2.90 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.2$, $155.8,143.9,137.6,137.5,136.4,132.8,129.3,128.6,128.5,128.4,128.1,128.0,126.5,125.0,70.9$, $70.2,66.7,66.7,52.4,37.8$; HRMS Calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 430.20128$, Found: 430.20165.

1d
(S,E)-benzyl (1-((4-oxobut-2-en-1-yl)oxy)-3-phenylpropan-2-yl)carbamate (1d).

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 75\% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.18(\mathrm{~m}, 10 \mathrm{H}), 6.79(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.34(\mathrm{dd}, J=16.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{bs}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 2$ H), 2.95-2.85 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=193.0$, 155.7, 152.4, 137.5, 136.4, 131.7, 129.2, $128.5,128.4,128.1,128.0,126.6,70.9,69.6,66.7,51.9,37.6$; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}:$ 354.16999, Found: 354.16973.

1e
(S,E)-methyl 4-(2-(((benzyloxy)carbonyl)amino)-3-phenylpropoxy)but-2-enoate (1e)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 89% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.18(\mathrm{~m}, 10 \mathrm{H}), 6.94(\mathrm{dt}, J=16.5 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{bs}, 1 \mathrm{H}), 5.10-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.85(\mathrm{~m} 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.5,155.7,144.0,137.6,136.4,129.2,128.4,128.3,128.0,127.9$, $126.4,120.8,77.2,70.7,69.5,66.6,52.0,51.5,37.6$; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}+\mathrm{H}\right]{ }^{+}: 385.96277$, Found: 328.96299 .

(S,E)-benzyl (3-methyl-1-((4-oxopent-2-en-1-yl)oxy)butan-2-yl)carbamate (1f).
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 86\% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{bs}, 1 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.53$ $(\mathrm{m}, 2 \mathrm{H}), 1.92-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.93(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=200.5,156.2,141.3,136.5,128.9,128.4,128.0,127.9,71.0,69.8,66.5,56.0,33.6,29.4,19.4,18.5,7.8$; HRMS Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 334.20128$, Found: 334.20162.

(S,E)-benzyl (3-methyl-1-((4-oxo-4-phenylbut-2-en-1-yl)oxy)butan-2-yl)carbamate (1g)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 86\% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dt}, J=16.5 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{bs}, 1 \mathrm{H}), 3.63-3.53(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.92(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.95(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=190.2,156.3,144.1,137.5,136.5,132.8,128.5,128.4,128.3,128.0$,
$127.9,124.8,71.3,70.2,66.6,56.1,29.5,19.5,18.6$; HRMS Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 382.20129$, Found: 382.20106.

(S,E)-benzyl (2-((4-oxopent-2-en-1-yl)oxy)-1-phenylethyl)carbamate (1h).
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 89% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.69(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.57(\mathrm{bs}, 1 \mathrm{H}), 5.15-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{bs}, 1 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.9,155.8,142.1,136.3,130.2,128.5,128.4,128.1,127.9,1.7 .6,126.6$, $73.6,69.8,66.8,54.6,27.3$; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 354.16999$, Found: 354.16983.

(S,E)-benzyl (2-((4-oxo-4-phenylbut-2-en-1-yl)oxy)-1-phenylethyl)carbamate (1i)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 80% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.28$ (m, 5 H), 7.03-6.99 (m, 1 H$), 6.98-6.38(\mathrm{~m}, 1 \mathrm{H}), 5.58$, (bs, 1 H$), 5.13-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{bs}, 1 \mathrm{H}), 4.31-$ $4.16(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=189.9,155.8,143.6$, $137.4,136.3,132.9,128.6,128.5,128.4,128.1,127.7,126.7,124.7,73.7,70.1,66.9,54.8 ;$ HRMS Calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 416.18564$, Found: 416.18501 .

(S,E)-benzyl (1-((4-oxopent-2-en-1-yl)oxy)propan-2-yl)carbamate (1j)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 81\% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{dd}, J=16.0 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10(\mathrm{bs}, 2 \mathrm{H}), 5.01-5.99(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, $1.22(\mathrm{~d}, 7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.1,155.7,142.7,136.4,130.1,128.5$, 128.4, 128.0, 73.9, 70.9, 69.7, 66.6, 46.6, 27.2, 17.8; HRMS Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}+\mathrm{Na}\right]^{+}: 314.13628$, Found: 314.13359 .

1k
(S,E)-benzyl (1-((4-oxo-4-phenylbut-2-en-1-yl)oxy)propan-2-yl)carbamate (1k)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 76\% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.29$ $(\mathrm{m}, 5 \mathrm{H}), 7.139 \mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dt}, J=15.5 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{bs}, 1$ H), 4.29-4.21 (m, 2 H), $3.98(\mathrm{bs}, 1 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=190.2,155.8,144.0,137.6,136.5,132.9,128.6,128.5,128.4,128.1,124.9,74.1,70.2,66.6$, 46.7, 17.9; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 354.16999$, Found: 354.16983.

(S,E)-benzyl (1-cyclohexyl-2-((4-oxopent-2-en-1-yl)oxy)ethyl)carbamate (11)

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 76\% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.13-5.07 (m, 2 H$), 4.93(\mathrm{~d}, ~ J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.47(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.81-$ $1.64(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.53(\mathrm{~m} \mathrm{1} \mathrm{H}), 1.28-0.96(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.8,156.3$, $142.8,136.5,130.2,128.5,128.0,70.8,69.7,66.7,55.4,39.1,29.8,29.1,27.2,26.2,26.1,26.0$; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 360.21693$, Found: 360.21682 .

(R,E)-methyl 2-(((benzyloxy)carbonyl)amino)-3-((4-oxopent-2-en-1-yl)oxy)propanoate (1m)

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 79\% over 2 steps); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.55-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{dd}, J=9.0$ $\mathrm{Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=9.0 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.7,170.3,155.7,141.8,135.9,130.1,128.3,128.0,127.8,77.2,70.5,69.7,66.8$, 54.8, 52.4, 27.0; HRMS Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6}+\mathrm{H}\right]{ }^{+}: 336.14417$, Found: 336.14435.

(3S,5R)-benzyl 3-benzyl-5-(2-oxopropyl)morpholine-4-carboxylate (2a-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 89%); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.42-7.08(\mathrm{~m}, 10 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=8 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{bs}, 1 \mathrm{H}), 3.85(\mathrm{bs}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J$ $=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=12 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.96(\mathrm{~m}$, $1 \mathrm{H}), 2.82(\mathrm{bs}, 1 \mathrm{H}), 2.65(\mathrm{bs}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.3,155.9$, 138.4, 136.3, $129.4,128.6,128.5,128.3,126.5,69.3,67.5,66.7,52.8,46.1,39.3,30.3$; IR (neat, cm^{-1}): 3029, 2974, 2936, $2865,1693,1381,1325,1279,1110,1073,1034,740,702$; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 368.18564$, Found: 368.18537; $[\alpha]_{\mathrm{D}}{ }^{26}=-68.3^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2a-trans

(3S,5R)-benzyl 3-benzyl-5-(2-oxopropyl)morpholine-4-carboxylate (2a-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 92\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 6 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.36-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ $(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ $(\mathrm{dd}, J=10.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{D}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=205.5,155.4,138.2,136.1,129.5,128.5$, 128.4, $1.8 .3,128.2,126.4,69.3,67.2,65.9,55.0,47.5,44.9,37.3,30.1$; IR (neat, cm^{-1}): 3029, 2974, 2938, 2865, $1702,1381,1325,1279,1110,1073,1034,740,702$; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 368.18564$, Found: 368.18537. $[\alpha]_{\mathrm{D}}{ }^{26}=-36.9^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

1-((3R,5S)-5-benzylmorpholin-3-yl)propan-2-one (2a'-cis)

Colorless oil (yield: 99%); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.31$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1$ H), $7.18(\mathrm{~d}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1$ H), 3.28-3.14 (m, 5 H), 2.65-2.54 (m, 2 H$), 2.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=206.8,137.2,128.9,128.6,126.6,71.7,70.8,56.0,50.9,45.0,38.6,30.4 ; \mathrm{IR}$ (neat, cm^{-1}): $3327,3061,3027,2959,2886,2841,1715,1451,1364,1338,1312,1170,1105,757,703 ;$ HRMS Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$: 234.14886, Found: 234.14840. $[\alpha]_{\mathrm{D}}{ }^{26}=73.9^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2a'-trans
1-((3S,5S)-5-benzylmorpholin-3-yl)propan-2-one (2a'-trans)
Colorless oil (yield: 98%); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1$ H), $7.20(\mathrm{~d}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 2$ H), $2.20(\mathrm{bs}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.4,138.3,129.1,128.6,126.4,71.2$, $71.0,51.9,46.4,44.7,38.1,30.6$; IR (neat, cm^{-1}): 3324, 3063, 3026, 2958, 2918, 2850, 1709, 1455, 1405, 1364, 1263, 1164, 1102, 757, 702; HRMS Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 234.14886$, Found: 234.14846. $[\alpha]_{\mathrm{D}}{ }^{26}=24.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5R)-benzyl 3-benzyl-5-(2-oxobutyl)morpholine-4-carboxylate (2b-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.42-7.09(\mathrm{~m}, 10 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{bs}, 1 \mathrm{H}), 3.86(\mathrm{bs}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.99$ (t, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{bs}, 1 \mathrm{H}), 2.44(\mathrm{bs}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.0,155.1,138.5,136.3,129.4,128.6,128.2,126.5,69.4,67.5,66.7$, 52.9, 46.3, 44.8, 39.1, 36.2, 7.6. 0 IR (neat, cm^{-1}): 3029, 2973, 2937, 2863, 1693, 1381, 1326, 1278, 1109, 1077, 1033, 744, 700; HRMS Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 382.20128$, Found: 382.19960. $[\alpha]_{\mathrm{D}}{ }^{26}=69.6^{\circ}$ $\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2b-trans
(3S,5S)-benzyl 3-benzyl-5-(2-oxobutyl)morpholine-4-carboxylate (2b-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 91\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 6 \mathrm{H}), 5.07-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.93$ $(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-$ $3.52(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{bs}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{bs}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=207.8,155.4,138.2,136.2,129.5,128.5,128.4,128.2,128.1$, $126.4,69.1,67.2,65.7,55.6,47.7,43.8,37.5,35.9,31.5,7.6$; IR (neat, cm^{-1}): 3029, 2773, 2937, 1704, 1497, 1455, 1412, 1356, 1313, 1273, 1216, 1122, 1068, 747, 700; HRMS Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}$: 382.20128 , Found: $382.19960 .[\alpha]_{\mathrm{D}}{ }^{26}=33.3^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2c-cis
(3S,5R)-benzyl 3-benzyl-5-(2-oxo-2-phenylethyl)morpholine-4-carboxylate (2c-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 86%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.98(\mathrm{bs}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.20(\mathrm{~m}, 2 \mathrm{H})$, $4.64(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{dd}, J=$ $12.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{bs}, 1 \mathrm{H}), 3.11(\mathrm{t}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=197.8,155.2,138.5,136.6,136.3,133.3,129.5,128.7,128.6,128.5,128.0,126.6,69.3,67.6$, $66.9,52.99,466.8,41.4,39.5$; IR (neat, cm^{-1}): 3062, 3032, 2927, 2861, 1690, 1598, 1581, 1497, 1450, 1412, 1283, 1217, 1179, 1134, 1097, 1064, 1026, 1004, 898, 760, 698, 581; HRMS Calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 430.20128$, Found: 430.20165. $[\alpha]_{\mathrm{D}}{ }^{26}=52.9^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2c-trans
(3S,5S)-benzyl 3-benzyl-5-(2-oxo-2-phenylethyl)morpholine-4-carboxylate (2c-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 86\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 10 \mathrm{H}), 5.07-$ $5.00(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.0,155.5,138.2,136.8,136.1,133.0,129.5,128.6,128.5,128.3,128.2,128.1$, $128.0,126.5,68.4,67.3,65.4,55.1,48.3,40.8,38.0$. IR (neat, cm^{-1}): 3062, 3031, 2961, 2926, 2860, 1691, 1597, 1495, 1450, 1407, 1366, 1283, 1217, 1116, 1054, 1002, 757, 698; HRMS Calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 430.20128$, Found: 430.20165. $[\alpha]_{\mathrm{D}}{ }^{26}=74.3^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5R)-benzyl 3-benzyl-5-(2-oxoethyl)morpholine-4-carboxylate (2d-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 71\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=9.79(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.24-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{bs}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.16-$ $3.11(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.79(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.7$, $155.1,140.9,138.3,136.1,129.4,128.7,128.6,128.5,128.4,128.3,126.6,126.5,69.6,67.7,67.5,66.8$, 55.0, 52.8, 47.5, 45.1, 39.5; IR (neat, cm^{-1}): 3063, 3028, 2960, 2857, 1696, 1494, 1454, 1410, 1277, 1107, 1072, 746, 700; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 354.16999$, Found: 354.16983. $[\alpha]_{\mathrm{D}}{ }^{26}=-56.9^{\circ}(\mathrm{c}=$ $1.0 \mathrm{CHCl}_{3}$).

2d-trans

(3S,5S)-benzyl 3-benzyl-5-(2-oxoethyl)morpholine-4-carboxylate (2d-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 64%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=9.75(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.29$ $(\mathrm{m}, 1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{dt}, J=12 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=$ $11.5 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.1,155.8,137.9,135.9,129.4,128.6,128.5,128.4,128.3,126.5,70.0,67.5,66.2$, 55.0, 46.7, 44.8, 36.9; IR (neat, cm^{-1}): 3063, 3028, 2960, 2858, 1696, 1496, 1454, 1412, 1313, 1274, 1218, 1311, 1059, 748, 700; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 354.16999$, Found: 354.16969. $[\alpha]_{\mathrm{D}}{ }^{26}=-52.1^{\circ}$ $\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

methyl 2-((3R,5S)-5-benzylmorpholin-3-yl)acetate (2e'-cis)
Filter after hydrogenation and no flash chromatography was applied, colorless oil (yield: 87%). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31-7.19(\mathrm{~m}, 5 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.28-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=$ $13.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=13.5 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{bs}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.94-1.86 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=173.9,138.6,129.2,129.1,128.5,128.4,126.3,74.7$, $70.0,52.4,51.5,40.3,30.5,25.0$; IR (neat, cm^{-1}): 3327, 3061, 3027, 2959, 2886, 2841, 1693, 1455, 1362, 1336, 1310, 1172, 1104, 757, 702; HRMS Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 250.14377$, Found: 250.14396. $[\alpha]_{\mathrm{D}}{ }^{26}=57.9^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5R)-benzyl 3-isopropyl-5-(2-oxobutyl)morpholine-4-carboxylate (2f-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.17-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.75(\mathrm{~m}, 1$ H), $3.58-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=17.0 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.88(\mathrm{~m}, 6$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.0,155.8,128.5,128.0,69.7,67.7,67.3,56.8,46.5,44.0,36.3$, 29.8, 20.6, 19.9, 7.6; IR (neat, cm^{-1}): 2967, 2935, 2867, 1697, 1451, 1414, 1369, 1289, 1118, 1063; HRMS Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 334.20128$, Found: 334.20162. $[\alpha]_{\mathrm{D}}{ }^{26}=-7.3^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

$2 f$-trans
(3S,5S)-benzyl 3-isopropyl-5-(2-oxobutyl)morpholine-4-carboxylate (2f-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 85%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-$ $7.66(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.35$ $(\mathrm{m}, 2 \mathrm{H}), 2.29(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.96(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=207.5,155.3,136.5,128.5,128.0,127.8,70.3,66.8,59.6,48.3,42.5,35.6,26.7,20.3,18.7$, 7.5. IR (neat, cm^{-1}): 2967, 2935, 2867, 1698, 1453, 1413, 1369, 1289, 1117, 1064; HRMS Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 334.20128$, Found: 334.20162. $[\alpha]_{\mathrm{D}}{ }^{26}=-3.4^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2g-cis
(3S,5R)-benzyl 3-isopropyl-5-(2-oxo-2-phenylethyl)morpholine-4-carboxylate (2g-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 89%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 5 \mathrm{H})$, 5.19$5.13(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 3$ H), $3.47(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) 3.24(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.99(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.9,155.9,136.7,133.3,128.7,128.5,128.1,128.0,69.5,67.8$, $67.4,56.5,47.1,40.5,30.0,20.7,19.9$; IR (neat, cm^{-1}): 3062, 3031, 2961, 2926, 2860, 1691, 1597, 1453, 1413, 1283, 1217, 1116, 1054, 1002, 757, 698; HRMS Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 382.20129$, Found: 382.20101. $[\alpha]_{D}{ }^{26}=-31.8^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2g-trans
(3S,5S)-benzyl 3-isopropyl-5-(2-oxo-2-phenylethyl)morpholine-4-carboxylate (2g-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 81%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.04-$ $4.93(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, ~ J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.99(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.6,155.6,136.8,1364,132.9,128.5,128.4,128.0,127.9,127.8,69.7,66.9,66.7$, 59.7, 48.9, 39.5, 27.3, 20.3, 18.8; IR (neat, cm^{-1}): 3061, 3031, 2963, 2925, 2861, 1689, 1596, 1452, 1413, 1285, 1218, 1115, 1056, 1004, 757, 698; HRMS Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 382.20129$, Found: 382.20106. $[\alpha]_{\mathrm{D}}{ }^{26}=35.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3R,5S)-benzyl 3-(2-oxopropyl)-5-phenylmorpholine-4-carboxylate (2h-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 94\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.57(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) 7.38-7.28(\mathrm{~m}, 8 \mathrm{H}), 5.27-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.55(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 2 \mathrm{H})$, $3.70(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=18.0 \mathrm{~Hz}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.3,155.6,141.1,136.3,128.5,128.4$, $128.1,127.9,127.8,127.4,69.6,68.3,67.6,51.1,46.7,45.2,30.0$; IR (neat, cm^{-1}): 3062, 3032, 2966, 2862, $1693,1497,1453,1413,1381,1356,1324,1283,1193,1159,1135,1102,1065,1029,935,911,740,700$, 572, 546; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}$: 354.16999, Found: 354.16979. $[\alpha]_{\mathrm{D}}{ }^{26}=43.6^{\circ}(\mathrm{c}=1.0$ CHCl_{3}).

2h-trans
(3S,5S)-benzyl 3-(2-oxopropyl)-5-phenylmorpholine-4-carboxylate (2h-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 91%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.36-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.04(\mathrm{bs}, 2 \mathrm{H}), 5.05-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.46$ $(\mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1$ H), $3.04(\mathrm{dd}, J=17.0 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=206.0,156.4,140.4,135.9,128.8,128.4,128.3,128.1,128.0,127.1,126.1,77.2,72.0,68.6$, 67.1, 56.0, 48.9, 43.5, 30.1; IR (neat, cm^{-1}): 3062, 3031, 2963, 2862, 1710, 1495, 1453, 1280, 1159, 1116, $1080,1056,1028,974,943,912,757,699,549,529.1$; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 354.16999$, Found: 354.16989. $[\alpha]_{\mathrm{D}}{ }^{26}=34.6^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

1-((3R,5S)-5-phenylmorpholin-3-yl)propan-2-one (2h'-cis)
Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2$ H), $7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1$ H), 3.73 (dd, $J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.63 (bs, 1 H), $2.49\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$), $2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.0$, $140.1,128.3,127.6,127.2,73.2,60.0,50.8,45.4,30.5$; IR (neat, cm^{-1}): 3326, 3061, 3029, 2958, 2886, $2848,1713,1453,1364,1338,1312,1170,1106,757,702$; HRMS Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$: 220.13321, Found: 220.13304. $[\alpha]_{\mathrm{D}}{ }^{26}=60.4^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2h'-trans
1-((3S,5S)-5-phenylmorpholin-3-yl)propan-2-one (2h'-trans)
Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2$ H), $7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=17.0 \mathrm{~Hz}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=17.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=206.5$, $141.6,128.6,128.1,127.5,73.7,70.6,54.2,48.2,43.6,29.9$; IR (neat, cm^{-1}): 3322, 3060, 3028, 2959, 2916, 2852, 1709, 1454, 1405, 1364, 1262, 1163, 1104, 757, 701; HRMS Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$: 220.13321, Found: 220.13304. $[\alpha]_{\mathrm{D}}{ }^{26}=21.8^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2i-cis
(3R,5S)-benzyl 3-(2-oxo-2-phenylethyl)-5-phenylmorpholine-4-carboxylate (2i-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 88\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 7 \mathrm{H})$, $5.32-$ $5.20(\mathrm{~m}, 2 \mathrm{H}), 4.80-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=11.5$ $\mathrm{Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ $(\mathrm{d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.6,155.6,141.4,136.4,136.3,133.0,128.6$, $128.5,128.4,128.1,128.0,127.9,127.8,127.5,126.1,69.6,68.2,67.7,51.2,47.5,40.6$; IR (neat, cm^{-1}): 3062, 3032, 2927, 2861, 1690, 1598, 1581, 1497, 1450, 1412, 1283, 1217, 1179, 1134, 1097, 1064, 1026, 1004, 898, 760, 698, 581; HRMS Calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 416.18564$, Found: 416.18501. $[\alpha]_{\mathrm{D}}{ }^{26}=$ $51.6^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2i-trans
(3S,5S)-benzyl 3-(2-oxo-2-phenylethyl)-5-phenylmorpholine-4-carboxylate (2i-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 86\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.16-$ 7.12 (m, 2 H), $7.00(\mathrm{bs}, 2 \mathrm{H}), 5.03-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (dd, $J=9.0$ $\mathrm{Hz}, J=5.0 \mathrm{~Hz}), 3.96-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}),(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 1$ H), 3.15-3.08 (m, 1 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.7$, 156.6, 140.6, 136.7, 135.8, 133.2, 133.0, $128.6,128.5,128.4,128.3,128.1,128.0,127.9,127.8,127.5,127.2,126.1,72.4,67.7,67.3,56.2,49.7$, 38.9; IR (neat, cm^{-1}): 3062, 3031, 2961, 2926, 2860, 1691, 1597, 1495, 1450, 1407, 1366, 1283, 1217, 1116,

1054, 1002, 757, 698; HRMS Calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 416.18564$, Found: 416.18501. $[\alpha]_{\mathrm{D}}{ }^{26}=71.7^{\circ}$ $\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5R)-benzyl 3-methyl-5-(2-oxopropyl)morpholine-4-carboxylate (2j-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 95\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.19-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{dt}, J=10.5 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.79$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m} 2 \mathrm{H}), 3.12(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, 1$ H), $2.56(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $206.4,155.0,136.5,128.5,128.1,127.8,71.1,69.2,67.2,48.2,46.1,30.2,19.4$; IR (neat, cm^{-1}): 3062, 2972, 2861, 1701, 1596, 1597, 1449, 1410, 1291, 1219, 1140, 1090, 1025, 747, 694; HRMS Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}+\mathrm{Na}\right]^{+}: 314.13628$, Found: 314.13359. $[\alpha]_{\mathrm{D}}{ }^{26}=19.5^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2j-trans
(3S,5S)-benzyl 3-methyl-5-(2-oxopropyl)morpholine-4-carboxylate (2j-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 91\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.37-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.17-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{td}, J=11.0 \mathrm{~Hz}, J=$ $3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=16.5 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=205.7,155.9,136.4,128.5,128.1,128.0,127.8,70.8,68.8,67.0,48.2,47.9,44.4$, 30.2, 17.7. IR (neat, cm^{-1}): 3032, 2968, 2930, 1703, 1597, 1449, 1410, 1362, 1279, 1250, 1216, 1180, 1149, $1114,1001,754,694$; HRMS Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}+\mathrm{Na}\right]^{+}: 314.13628$, Found: 314.13359. $[\alpha]_{\mathrm{D}}{ }^{26}=-12.6^{\circ}$ $\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2k-cis
(3S,5R)-benzyl 3-methyl-5-(2-oxo-2-phenylethyl)morpholine-4-carboxylate (2k-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 89%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46 \mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{bs}, 5 \mathrm{H}), 5.18(\mathrm{bd}, 2 \mathrm{H})$, $4.61(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.16(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.9,155.1,136.6,136.5$, $133.3,128.6,128.5,128.4,128.0,127.8,71.1,69.2,67.2,46.8,46.2,41.5,19.6$; IR (neat, cm^{-1}): 3062, 2972, 2861, 1690, 1590, 1597, 1449, 1410, 1291, 1219, 1140, 1090, 1025, 747, 694; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 354.16999$, Found: 354.16971. $[\alpha]_{\mathrm{D}}{ }^{26}=-22.5^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

2k-trans
(3S,5S)-benzyl 3-methyl-5-(2-oxo-2-phenylethyl)morpholine-4-carboxylate (2k-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{bs}, 5 \mathrm{H}), 5.13-5.01(\mathrm{~m}, 2 \mathrm{H})$, 4.58-4.54 (m, 1 H), 3.93-3.85 (m, 2 H), $3.74(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.5,156.0$, $136.7,136.3,133.1,128.6,128.5,128.1,128.0,70.9,68.3,67.0,48.8,48.2,39.8,18.1$; IR (neat, cm^{-1}): 3032, 2968, 2930, 1692, 1597, 1449, 1410, 1362, 1279, 1250, 1216, 1180, 1149, 1114, 1001, 754, 694; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 354.16999$, Found: 354.16970. $[\alpha]_{\mathrm{D}}{ }^{26}=-44.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5R)-benzyl 3-cyclohexyl-5-(2-oxopropyl)morpholine-4-carboxylate
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 92\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.17-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{dt}, J=9.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3.75-$ $3.56(\mathrm{~m}, 3 \mathrm{H}), 3.38(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, 1.86-1.57 (m, 7 H), 1.30-0.84 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.3,186.7,155.8,136.5$, 128.5, $128.0,69.7,67.3,67.1,55.6,46.4,45.2,39.3,30.9,30.3,30.0,26.3,26.2,26.0$; IR (neat, cm^{-1}): 2929, 2852, 1694, 1450, 1414, 1355, 1286, 1134, 1102, 1080, 766, 698; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}$: 360.21693, Found: $360.21682 .[\alpha]_{D}{ }^{26}=-34.2^{\circ}\left(c=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5S)-benzyl 3-cyclohexyl-5-(2-oxopropyl)morpholine-4-carboxylate

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 95\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.38-7.27,(\mathrm{~m}, 5 \mathrm{H}), 5.08-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-$ $3.69(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dd}, J=11.5 J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.25(\mathrm{~m}, 1$ H), 2.31-2.28 (m, 1 H$), 2.14(\mathrm{bs}, 3 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 2 \mathrm{H})$, 1.14-1.05 $(\mathrm{m}, 1 \mathrm{H}), 0.94-0.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=204.8,155.4,136.5,128.5,128.0,127.9$, $70.2,66.8,66.4,58.4,48.4,43.7,42.7,36.2,36.2,30.7,29.9,28.4,26.3,26.1,26.0 ;$ IR (neat, $\left.\mathrm{cm}^{-1}\right): 2926$, $2851,1720,1697,1448,1425,1358,1289,1265,1244,1129,1110,1049,756,698$; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 360.21693$, Found: $360.21682 .[\alpha]_{\mathrm{D}}{ }^{26}=-40.1^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3R,5R)-4-benzyl 3-methyl 5-(2-oxopropyl)morpholine-3,4-dicarboxylate (2m-cis)
Due to the rotamer issue, major isomer was reported. Minor isomer signals are in parentheses. See Cbzremoval product $\mathbf{2 m}$ '-cis for detailed information.
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 91\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.26-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.40(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.81$ (m, 2H), 2.06 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.1$, 117.7, 155.7, 136.1, 128.5, 128.1, 127.7, $69.5,69.2,67.5,66.9,53.1,52.7,52.5,46.4,46.1,44.2,43.1,30.3$; IR (neat, cm^{-1}): 3032, 2968, 2930, 1751, 1703, 1411, 1285, 1225, 1111, 1071, 1149, 1114, 1001, 754, 694; HRMS Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6}+\mathrm{H}\right]^{+}: 336.14417$, Found: 336.14432. $[\alpha]_{\mathrm{D}}{ }^{26}=42.3^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3R,5S)-4-benzyl 3-methyl 5-(2-oxopropyl)morpholine-3,4-dicarboxylate (2m-trans)
Due to the rotamers, major isomer was reported. Minor isomer signals are in parentheses. See Cbz-removal product 2m'-trans for detailed information.
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 93\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{bs}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{bs}, 1 \mathrm{H}), 2.68-$ $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.17$ (2.00) (bs, 3 H$) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=205.6,170.5,156.2,135.8$, 128.5, $128.3,128.2,69.1,67.6,55.4,54.6,52.5,48.1,43.9,30.2$; IR (neat, cm^{-1}): 3031, 2969, 2930, 1750, 1702, 1413, 1285, 1224, 1113, 1070, 1148, 1114, 1001, 755, 696; HRMS Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6}+\mathrm{H}\right]^{+}$: 336.14417, Found: 336.14435. $[\alpha]_{\mathrm{D}}{ }^{26}=32.6^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3R,5R)-methyl 5-(2-oxopropyl)morpholine-3-carboxylate (2 m '-cis)
Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.11$ (dd, $J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75$3.72(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{bs}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): $\delta=206.6,170.3,70.7,68.2,57.1,52.1,49.9,44.9,30.4 ;$ IR (neat, cm^{-1}): 3329, 2956, 2855, 1740, 1712, 1438, 1372, 1285, 1216, 1170, 1107, 939; HRMS Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6}+\mathrm{H}\right]^{+}: 336.14417$, Found: 336.14439. $[\alpha]_{\mathrm{D}}{ }^{26}=64.8^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3R,5S)-methyl 5-(2-oxopropyl)morpholine-3-carboxylate (2m'-trans)
Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.22(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (bs, 1 H), $3.84-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 2 \mathrm{H})$, $3.29(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.189 \mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $206.6,172.1,70.8,67.3,55.1,52.3,46.9,44.9,30.4$; IR (neat, cm^{-1}): 3328, 2957, 2856, 1740, 1711, 1437, 1372, 1285, 1215, 1170, 1108, 939; HRMS Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6}+\mathrm{H}\right]^{+}: 336.14417$, Found: 336.14439. $[\alpha]_{\mathrm{D}}{ }^{26}=16.3^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

3a
(S,E)-4-oxopent-2-en-1-yl 2-(((benzyloxy)carbonyl)amino)-3-phenylpropanoate (3a)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.37-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.28-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.80-4.68(\mathrm{~m}, 3 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.4,171.1,155.6,138.5,136.1,135.4,131.3,129.1,128.7,128.5,128.2$, $128.1,127.2,67.0,63.5,54.9,38.2,27.5$; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5}+\mathrm{H}\right]{ }^{+}: 382.16490$, Found: 382.16465.

3b

(S,E)-benzyl (1-oxo-1-((4-oxopent-2-en-1-yl)amino)-3-phenylpropan-2-yl)carbamate (3b)

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.35-7.16(\mathrm{~m}, 10 \mathrm{H}), 6.53(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{bs}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.55-5.52 (m, 1 H$), 50.7-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.5-4.4(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3$ H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.8,171.1,156.0,142.1,136.2,135.9,130.7,129.2,128.7,128.5$, 128.2, 127.1, 67.1, 56.4, 40.1, 38.5, 27.3; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 381.18089$, Found: 381.18063.

3c
(S,E)-methyl 2-(2-(((benzyloxy)carbonyl)amino)-N-(4-oxopent-2-en-1-yl)-3-phenylpropanamido)acetate (3c)

Due to the rotamers, major isomer was reported. Minor isomer signals are in parentheses.
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.36-7.17(\mathrm{~m}, 10 \mathrm{H}), 6.71-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.035(\mathrm{t}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.00$ $(\mathrm{m}, 2 \mathrm{H}), 4.89-4.85(4.66-4.61)(\mathrm{m}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.86(3.78)(\mathrm{d}, J=17.0 \mathrm{~Hz}(J=18.5 \mathrm{~Hz}), 1 \mathrm{H})$, 2.72 (2.71), ($\mathrm{s}, 3 \mathrm{H}$), 3.60-3.54 (3.31-3.24), (m, 1 H), 3.41-3.27 (m, 1 H), 3.13-3.29 (m, 2 H), 2.42-2.35 (m, $1 \mathrm{H}), 2.21(2.22)(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=198.5(198.2)$, 172.4(172.6), 169.3(169.6), 155.1, $142.4(144.1), \quad 136.5(1.6 .2), \quad 133.6(133.0), \quad 129.8(129.6), \quad 128.9(128.8), \quad 128.7(128.4), \quad 128.2(128.1)$, 127.4(127.3), 67.2(67.1), 52.5(52.9), 52.3(52.4), 40.0(39.7), 31.7(30.7), 27.3(27.1); HRMS Calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right]^{+}: 453.20202$, Found: 453.20103.

3d
(S,E)-benzyl (1-(2-nitro-N-(4-oxopent-2-en-1-yl)phenylsulfonamido)-3-phenylpropan-2-yl)carbamate (3d) Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.92-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.12(\mathrm{~m}, 10 \mathrm{H}), 6.46(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.93(\mathrm{~m}, 3 \mathrm{H}), 4.17-4.03(\mathrm{~m}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=14.5 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ $(\mathrm{dd}, J=15.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.0, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=14.0 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1$ H), $2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.4,156.0,147.6,140.0,136.7,136.3,133.8,133.2$, $133.0,131.8,130.8,129.0,128.6,128.4,128.0,127.8,126.8,124.3,77.2,66.6,50.4,49.8,48.4,39.1$, 27.1; HRMS Calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}+\mathrm{H}\right]^{+}: 552.17990$, Found: 552.17883.

3e
(S,E)-benzyl (1-((4-oxopent-2-en-1-yl)thio)-3-phenylpropan-2-yl)carbamate (3e)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.36-7.15(\mathrm{~m}, 10 \mathrm{H}), 6.66-6.59(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1$ H), 4.06-4.03 (m, 1 H$), 3.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.9,155.7,141.8,137.0,136.3,132.2,129.2,128.6,128.5,128.1,127.9$, 126.7, 66.7, 51.4, 39.6, 34.9, 33.4, 27.1; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}: 384.16280$, Found: 384.16240.

$3 f$

(S,E)-benzyl (1-((4-oxopent-2-en-1-yl)sulfonyl)-3-phenylpropan-2-yl)carbamate (3f)

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 70\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.34-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 1 \mathrm{H})$, 3.13$3.02(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.8$, 155.6, 138.1, 136.2, 136.0, 131.0, $129.2,128.9,128.6,128.3,128.1,127.2,66.9,57.1,54.6,48.7,39.9,27.3$; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}+\mathrm{H}\right]^{+}: 416.15263$, Found: 416.15299 .

$3 g$

E-benzyl (7-oxo-1-phenyloct-5-en-1-yl)carbamate (3g)

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 65%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.34-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.74-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11-5.01$ $(\mathrm{m}, 2 \mathrm{H}), 4.70-4.67(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.37(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.5,155.6,147.4,142.0,136.3,131.5,128.6,128.4,128.0,127.4,126.2$, 66.7, 55.1, 36.0, 31.9, 26.8, 24.6; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 352.19072$, Found: 352.19179.

3h
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 53%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $=7.36-7.26(\mathrm{~m}, 10 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.01(\mathrm{~m}, 2$ H), 4.69-4.66 (m, 1 H$), 2.30-2.15(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{H} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=198.4,155.9,146.9$, 137.1, $132.0,129.0,128.8,128.3,128.2,127.9,126.7,66.9,55.4,35.3,29.5,26.9$; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 338.17507$, Found: 338.17596.

$3 i$

(R,E)-benzyl (8-oxo-1-phenylnon-6-en-1-yl)carbamate (3i)

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 62%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.31-7.23(\mathrm{~m}, 10 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.01$ $(\mathrm{m}, 2 \mathrm{H}), 4.68-4.66(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.25(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.5,155.6,147.8,142.3,136.3,131.2,128.5,128.3,127.9,127.2,126.2$, $77.2,66.5,55.1,36.2,32.0,27.5,26.7,25.6$; HRMS Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3}+\mathrm{H}\right]$] : 366.20637, Found: 366.20620 .

(R,E)-benzyl (9-oxo-1-phenyldec-7-en-1-yl)carbamate (3j)

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 62%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.32-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.75(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 3$ H), 4.68-4.66(m, 1 H$), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.17$, ($\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.75(\mathrm{bs}, 2 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.6,155.6,148.4,136.4,131.3,128.6,128.4,128.0,127.3,126.3,66.7$, 55.3, 36.4, 32.2, 28.8, 27.8, 26.8, 25.8; HRMS Calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 380.22202$, Found: 380.22230 .

Due to the rotamers, major isomer was reported. Minor isomer signals are in parentheses. See Cbz-removal product $\mathbf{4 c}$ '-cis for detailed information.
(2S,6R)-benzyl 2-benzyl-4-(2-methoxy-2-oxoethyl)-3-oxo-6-(2-oxopropyl)piperazine-1-carboxylate (4c-cis) Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 92\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{bs}, 4 \mathrm{H}), 7.11(\mathrm{bs}, 2 \mathrm{H}), 5.09(4.99)(\mathrm{bs}, 2 \mathrm{H}), 4.78(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.50$ $(\mathrm{m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 1 \mathrm{H}), 1.98(1387)(\mathrm{s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=207.4$, 169.0 (168.1), 153.9, 136.0, 129.9, 128.7, 128.7, 128.5, 128.3, 128.1, $127.1,126.8,67.8(67.4), 58.8,52.1(52.3), 46.9(47.0), 44.5(43.6), 40.3(39.0), 29.8$; IR (neat, $\left.\mathrm{cm}^{-1}\right): 3029$, 2973, 2937, 2863, 1747, 1711, 1643, 1494, 1452, 1404, 1381, 1364, 1326, 1211, 702; HRMS Calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right]^{+}: 453.20202$, Found: 453.20103.

Due to the rotamers, major isomer was reported. Minor isomer signals are in parentheses. See Cbz-removal product $\mathbf{4 c}$ '-cis for detailed information.
(2S,6S)-benzyl 2-benzyl-4-(2-methoxy-2-oxoethyl)-3-oxo-6-(2-oxopropyl)piperazine-1-carboxylate (4ctrans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 62%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.24-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.61-4.59(\mathrm{~m}, 1 \mathrm{H})$, $4.30(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.75(2.95)(\mathrm{d}, J=14.0 \mathrm{~Hz}$ $(J=12.5 \mathrm{~Hz}), 1 \mathrm{H}), 2.11(2.04)(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=207.4,169.0(168.1), 153.9$, $136.0,129.9,128.7,128.7,128.5,128.3,128.1,127.1,126.8,67.8(67.4), 58.8,52.1(52.3), 46.6(47.2)$, $44.3(43.2), 39.7(38.0), 29.9$; IR (neat, cm^{-1}): 3029, 2973, 2937, 2863, 1747, 1711, 1643, 1494, 1452, 1404, 1381, 1364, 1326, 1211, 702; HRMS Calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right]^{+}: 453.20202$, Found: 453.20103. $[\alpha]_{\mathrm{D}}{ }^{26}=$ $-51.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

methyl 2-((3S,5R)-3-benzyl-2-oxo-5-(2-oxopropyl)piperazin-1-yl)acetate (4c'-cis)

Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.34-7.23(\mathrm{~m}, 10 \mathrm{H}), 4.28(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=13.5 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.019 \mathrm{dd}, \mathrm{J}=11.0 \mathrm{~Hz}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, 1.88 (bs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.7,170.4,169.5,138.5,129.7,128.8,126.9,58.5$, $53.6,52.5,48.5,46.745 .9,44.3,38.5,30.8$; IR (neat, cm^{-1}): 3315, 2925, 1749, 1710, 1646, 1494, 1452, 1404, 1364, 1211, 702; HRMS Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$: 319.16524, Found: 319.16501.

methyl 2-((3S,5S)-3-benzyl-2-oxo-5-(2-oxopropyl)piperazin-1-yl)acetate (4c'-trans)
Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.33-7.21(\mathrm{~m}, 10 \mathrm{H}), 4.10(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.78-3.75 (m, 1 H$), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{dd}, J=$ $14.0 \mathrm{~Hz}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=206.0,169.9,169.2,138.1,129.5,129,2,128.6,126.6,60.0,53.3,48.5,48.146 .5,38.1,30.2 ;$ IR (neat, cm^{-1}): 3316, 2926, 1747, 1711, 1643, 1494, 1455, 1405, 1363, 1210, 702; HRMS Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 319.16524$, Found: 319.16501.

(2S,6R)-benzyl 2-benzyl-4-((2-nitrophenyl)sulfonyl)-6-(2-oxopropyl)piperazine-1-carboxylate (4d-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 91\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.05(\mathrm{~m}, 10 \mathrm{H}), 5.2(\mathrm{bs}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1$ H), 4.26-4.14 (m, 1H), 3.83 (bs, 1 H$), 3.76(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{bs}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.91(\mathrm{dd}, J=12.5 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=12.5 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.53-$ $2.48(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{bs}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.1,154.9,148.3,137.9$, 133.9, 131.7, $131.2,131.0,129.6,128.7,127.8,126.7,124.3,68.5,53.9,48.2,46.6,46.2,45.0,39.9,30.5$; IR (neat, cm $\left.{ }^{1}\right): 3027,2921,2853,1712,1619,1565,1497,1485,1453,1411,1323,936,840,753,699,653,594 ;$ HRMS Calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}+\mathrm{H}\right]^{+}: 552.17990$, Found: 552.17883. $[\alpha]_{\mathrm{D}}{ }^{26}=-96.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(2S,6S)-benzyl 2-benzyl-4-((2-nitrophenyl)sulfonyl)-6-(2-oxopropyl)piperazine-1-carboxylate (4d-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 94\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.17-$ $7.11(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.19-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=9.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-$ $4.15(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=13.0 \mathrm{~Hz}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.2,154.5,147.8,137.3,135.9,133.9,131.8,131.7,131.5,129.2,128.6,128.5$, $128.4,128.2,126.7,124.3,67.7,54.8,48.2,46.2,45.8,43.6,40.1,30.1$; IR (neat, cm^{-1}): 3027, 2920, 2854, $1710,1619,1565,1497,1484,1453,1412,1323,936,840,753,699,653,594 ;$ HRMS Calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}+\mathrm{H}\right]^{+}: 552.17990$, Found: 552.17883. $[\alpha]_{\mathrm{D}}{ }^{26}=-94.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

1-((2R,6S)-6-benzyl-4-((2-nitrophenyl)sulfonyl)piperazin-2-yl)propan-2-one (4d'-cis)
Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.50(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39-7.14 (m, 4 H), $7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.55$ (m, 1 H), 3.17-3.11 (m, 1 H), 3.06-3.00 (m, 1 H), 2.65 (dd, $J=13.5 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 3$ H), $2.36(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.6,146.2,137.0,134.2,130.2,128.9,128.6,126.8,117.6,117.4,117.1,55.5,50.7,50.5,50.1$, $46.6,40.2,30.4$; IR (neat, cm^{-1}): 3477, 3378, 3027, 2919, 2851, 1711, 1618, 1483, 1452, 1323, 1151, 1009, 752, 701, 596; HRMS Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}+\mathrm{H}\right]^{+}$: 418.14312, Found: 418.14339. $[\alpha]_{\mathrm{D}}{ }^{26}=39.5^{\circ}(\mathrm{c}=$ $1.0 \mathrm{CHCl}_{3}$).

1-((2S,6S)-6-benzyl-4-((2-nitrophenyl)sulfonyl)piperazin-2-yl)propan-2-one (4d'-trans)
Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.49(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.22 (m, 4 H), $7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-$ $3.21(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.72(\mathrm{~m}, 5 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=206.7,146.2,137.1,134.4,130.1,129.1,128.7,126.8,117.6,117.2,117.1,77.2,51.8,49.4,49.2,46.6$, 44.1, 38.4, 30.5; IR (neat, cm^{-1}): 3473, 3377, 3027, 2920, 2854, 1710, 1619, 1565, 1484, 1453, 1323, 1522, 936, 840, 753, 699, 653, 594; HRMS Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}+\mathrm{H}\right]^{+}: 418.14312$, Found: 418.14339. [$\left.\alpha\right]_{\mathrm{D}}{ }^{26}$ $=10.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5R)-benzyl 3-benzyl-5-(2-oxopropyl)thiomorpholine-4-carboxylate (4e-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 5%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.45-7.02(\mathrm{~m}, 10 \mathrm{H}), 5.21(\mathrm{bs}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{bs}, 1 \mathrm{H}), 3.26-3.20$ (m, 1 H), 2.90 (dd, $J=14.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.61(\mathrm{dd}, J=14.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1$ H), 2.37 (bs, 1 H), 2.15 (m, 3 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.2,162.5,155.5,138.6$, 136.2, $129.3,128.6,128.3,126.6,67.9,52.3,47.0,45.5,39.8,32.0,30.4,29.5$; IR (neat, cm^{-1}): 3062, 3028, 2908, $1692,1496,1454,1406,1354,1325,1300,1275,1255,1223,1167,1103,1073,1042,1012,746,700$; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}: 384.16280$, Found: 384.16240. $[\alpha]_{\mathrm{D}}{ }^{26}=-23.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5S)-benzyl 3-benzyl-5-(2-oxopropyl)thiomorpholine-4-carboxylate (4e-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 85%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.40-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.22-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 2 \mathrm{H})$, 3.09$2.76(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=13.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{dd}, J=13.5 \mathrm{~Hz}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=204.1$, 155.3, 138.6, 136.1, 129.5, 128.8, 128.6, $128.3,128.1,126.7,67.3,54.5,47.8,47.0,39.7,30.4,28.1,26.0$; IR (neat, cm^{-1}): 3062, 3027, 2929, 1692, $1496,1454,1406,1354,1324,1300,1275,1255,1223,1167,1103,1073,1042,1012,746,700$; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}: 384.16280$, Found: 384.16240. $[\alpha]_{\mathrm{D}}{ }^{26}=-43.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5R)-benzyl 3-benzyl-5-(2-oxopropyl)thiomorpholine-4-carboxylate 1,1-dioxide (4f-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 95\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.39-7.22(\mathrm{M}, 10 \mathrm{H}), 5.40-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{bs}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=18.0 \mathrm{~Hz}, J=$ $11.0 \mathrm{~Hz}), 3.56(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{bs}, 2 \mathrm{H}), 2.98-2.86(\mathrm{~m}, 3 \mathrm{H}), 2.71(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3$ $\mathrm{H}){ }^{13}{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=205.6,154.7,137.0,135.5,129.6,128.9,128.6,128.5,128.2,127.0$, $77.2,68.5,55.4,50.8,48.3,48.9,45.3,38.3,30.2$; IR (neat, cm^{-1}): 3062, 3027, 2929, 1699, 1496, 1454, $1406,1354,1300,1275,1255,1238,1223,1167,1119,1103,1073,1042,1012,893,746,700$; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}+\mathrm{H}\right]^{+}: 416.15263$, Found: 416.15299. $[\alpha]_{\mathrm{D}}{ }^{26}=-8.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(3S,5S)-benzyl 3-benzyl-5-(2-oxopropyl)thiomorpholine-4-carboxylate 1,1-dioxide (4f-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 96\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.40-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.19-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=14.5 \mathrm{~Hz}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.01(\mathrm{~m}, 7 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=204.8,154.9$, 136.8, $135.5,129.3,128.8,128.7,128.6,128.2,127.0,68.0,54.8,54.7,52.6,47.5,45.3,38.0,30.1$; IR (neat, cm $\left.{ }^{1}\right): 3062,3027,2929,1698,1497,1454,1405,1354,1300,1274,1255,1238,1225,1167,1119,1103$, 1073, 1042, 1012, 893, 746, 700; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}+\mathrm{H}\right]^{+}: 416.15263$, Found: 416.15299. $[\alpha]_{\mathrm{D}}{ }^{26}=-17.2^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

1-((3R,5S)-5-benzyl-1,1-dioxidothiomorpholin-3-yl)propan-2-one (4f'-cis)
Colorless oil (yield: 99%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1$ H), $7.17(\mathrm{~d}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.67(\mathrm{~m}, 4$ H), $2.63(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.0,135.9,129.1,128.8,127.2,56.5,55.9,55.3,50.3,47.8,42.0,30.4$; IR (neat, $\left.\mathrm{cm}^{-1}\right): 3581,3317,3027,2923,2854,1712,1494,1455,1360,1294,1259,1238,1119,1030,893,755,735$, 702; HRMS Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}: 282.11585$, Found: 282.11569. $[\alpha]_{\mathrm{D}}{ }^{26}=66.7^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

1-((3S,5S)-5-benzyl-1,1-dioxidothiomorpholin-3-yl)propan-2-one (4f'-trans)
Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.33$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26 (t, $J=7.5 \mathrm{~Hz}, 1$ H), $7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1$ H), 3.02-2.75 (m, 7 H), $2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.1,136.8,129.4$, 129.1, 127.5, $56.6,54.8,51.5,47.5,44.4,41.1,30.7$. IR (neat, cm^{-1}): 3581, $3329,3027,2921,2854,1710,1494,1455$, 1359, 1293, 1259, 1227, 1119, 1030, 893, 755, 735, 703; HRMS Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}$: 282.11585, Found: 282.11569. $[\alpha]_{\mathrm{D}}{ }^{26}=96.1^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(2S,6R)-benzyl 2-(2-oxopropyl)-6-phenylpiperidine-1-carboxylate (4g-cis)

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 96\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.38-7.22(\mathrm{~m}, 10 \mathrm{H}), 5.56(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.93-4.88(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=13.5$ $\mathrm{Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=16.5 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.72$ (m, 2 H), 1.63-1.53 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.4,156.4,141.9,136.7,128.4$, 128.3, $128.3,128.0,127.9,127.7,126.7,127.0,126.4,125.8,67.5,51.4,47.2,46.9,29.8,28.2,26.3,15.0$; IR (neat, cm^{-1}): 3029, 2974, 2936, 2865, 1693, 1381, 1325, 1279, 1110, 1073, 1034, 740, 702; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 352.19072$, Found: 352.19093.

(2R,6R)-benzyl 2-(2-oxopropyl)-6-phenylpiperidine-1-carboxylate (3g-trans)

Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 96\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.33-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.26(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.09(\mathrm{~m}, 1 \mathrm{H})$, $2.64(\mathrm{dd}, J=16.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.67(\mathrm{~m}$, $1 \mathrm{H}), 1.64-1.48(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.5,155.9$, 141.7, 136.5, 128.3, 128.2, 127.8, $127.6,126.3,125.8,66.8,55.0,48.5,48.3,29.9,27.1,25.8,15.1$; IR (neat, cm^{-1}): 3029, 2974, 2938, 2865, $1702,1381,1325,1279,1110,1073,1034,740,702$; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 352.19072$, Found: 352.19093.

1-((2S,6R)-6-phenylpiperidin-2-yl)propan-2-one (4g'-cis)

Colorless oil (yield: 99\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2$ H), $7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.25(\mathrm{bs}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.20$ (m, 1 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=208.3,145.2,128.3,127.0,126.7,61.8,52.9,50.6,34.0,31.8$, 30.7, 25.0; IR (neat, cm^{-1}): 3405, 2949, 2600, 2495, 1710, 1479, 1465, 1442, 1365, 1172, 1034, 930, 748, 699; HRMS Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}+\mathrm{H}\right]^{+}: 218.15394$, Found: 218.15389.

1-((2R,6R)-6-phenylpiperidin-2-yl)propan-2-one (4g'-trans)
Colorless oil (yield: 93\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.41-7.20(\mathrm{~m}, 5 \mathrm{H}), 3.96$ (dd, $J=8.5 \mathrm{~Hz}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.60-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=17.0 \mathrm{~Hz}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1$ H), $2.17(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=208.6,144.5,128.3,128.2,126.7,61.8,54.2,52.9,50.6,47.9,46.6,34.1,32.8$, $31.8,30.6,30.2,25.0,20.2$; IR (neat, cm^{-1}): 3405, 2939, 2601, 2495, 2284, 1854, 1818, 1714, 1677, 1641, 1587, 1494, 1479, 1381, 1357, 1174, 1035, 698; HRMS Calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}+\mathrm{H}\right]^{+}: 218.15394$, Found: 218.15389 .

(2S,5R)-benzyl 2-(2-oxopropyl)-5-phenylpyrrolidine-1-carboxylate (4h-cis)

Due to the rotamers, major isomer was reported. Minor isomer signals are in parentheses. Purified by flash chromatography ($\mathrm{EtOAc} / \mathrm{Hexane}$) as colorless oil (yield: 96\%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=7.35-7.20(\mathrm{~m}$, $9 \mathrm{H}), 6.91(\mathrm{bs}, 1 \mathrm{H}), 5.01-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.93-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{bs}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ $(\mathrm{dd}, J=16.5 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.60$ (m, 2 H); ${ }^{13} \mathrm{H} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=207.0,155.5,144.4,137.3,128.7,127.9,127.4,127.1,125.9$, $66.8,62.9,56.2,49.7,49.0,34.8,30.5$. IR (neat, cm^{-1}): 3029, 2974, 2936, 2865, 1701, 1381, 1325, 1279, 1110, 1073, 1034, 740, 702; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 338.17507$, Found: 338.17596.

(2S,5S)-benzyl 2-(2-oxopropyl)-5-phenylpyrrolidine-1-carboxylate (4h-trans)
Due to the rotamers, major isomer was reported. Minor isomer signals are in parentheses.
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 96%). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $=7.37-7.11(\mathrm{~m}, 10 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.66(4.75)(\mathrm{d}, J=13.0$ $\mathrm{Hz}(J=13.0 \mathrm{~Hz}), 1 \mathrm{H}), 4.55-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.27(3.01),(\mathrm{dd}, J=17.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}(J=17.0 \mathrm{~Hz}, J=2.5$ $\mathrm{Hz}), 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.16$ (2.05) (s, 3 H$), 1.77-1.73$ (1.73-
1.69) (m, 1 H), 1.64-1.58 (m, 1H); ${ }^{13} \mathrm{H} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=207.4$ (207.0), 154.5 (154.1), 144.8 (144.0), 137.2 (137.3), 128.8 (128.7), 128.6 (128.6), 128.4 (128.3), 127.7 (127.3), 127.0, 125.6, 67.1 (66.6), 61.8 (61.8), 55.2 (54.5), 47.1 (48.3), 32.9 (31.9), 30.6 (30.5), 27.6 (28.5); IR (neat, cm^{-1}): 3029, 2974, 2936, $2865,1703,1381,1325,1279,1110,1073,1034,740,702$; HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$: 338.17507, Found: 338.17596.

1-((2S,5R)-5-phenylpyrrolidin-2-yl)propan-2-one (4h'-cis)
Colorless oil (yield: 95\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.41(\mathrm{bs}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 4.50(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ $(\mathrm{dd}, J=18.5 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.9,134.0,129.1,128.7,63.3,55.9,44.6,30.1,30.0,28.7$. IR (neat, cm^{-1}): 3406, 2946, 2602, 2496, 1711, 1479, 1465, 1443, 1367, 1172, 1035, 931, 747, 699; HRMS Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}+\mathrm{Na}\right]^{+}: 226.12024$, Found: 226.12016.

1-((2R,5R)-5-phenylpyrrolidin-2-yl)propan-2-one (4h'-trans)
Colorless oil (yield: 90\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.40(\mathrm{bs}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=18.5 \mathrm{~Hz}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=18.5 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, 1.81-1.74 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.5$, 134.6, 129.0, 128.8, 128.1, 62.3, 55.3, 45.5, $31.7,30.5,29.9$; IR (neat, cm^{-1}): $3405,2939,2601,2495,2284,1854,1818,1710,1677,1641,1587,1494$, 1479, 1381, 1357, 1174, 1035, 698; HRMS Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}+\mathrm{Na}\right]^{+}: 226.12024$, Found: 226.12016.

(4S,7R,8S,9aR)-4-benzyl-8-methyl-7-nitrooctahydropyrido[2,1-c][1,4]oxazin-8-ol (5a-cis)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 93%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $=7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{~m}, 3 \mathrm{H}), 3.23-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=13.5 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{t}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=15.0 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}$, $J=13.5 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{H} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=$ $137.5,128.9,128.5,126.5,89.4,71.1,68.3,61.3,58.5,55.0,48.5,39.5,35.8,26.9$; IR (neat, cm^{-1}): 3399 ,

3027, 2923, 2862, 1552, 1496, 1457, 1421, 1371, 1299, 1276, 1245, 1179, 1127, 1076, 1014, 928, 894, 738, 702, 606; HRMS Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$: 307.16523, Found: 307.16596. $[\alpha]_{\mathrm{D}}{ }^{26}=157.0^{\circ}(\mathrm{c}=1.0$ CHCl_{3}).

5a-trans

(4S,7S,8R,9aS)-4-benzyl-8-methyl-7-nitrooctahydropyrido[2,1-c][1,4]oxazin-8-ol (5a-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $=7.31-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.65(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-$ $3.59(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 3 \mathrm{H})$, 2.95-2.92 (m, 1 H), $2.78(\mathrm{~d}, ~ J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=13.5 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.15$ $(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{H} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=139.4,129.4,128.6,126.1,89.5,71.9,68.7,68.0$, $60.8,49.9,47.9,39.9,28.7,27.0$; IR (neat, cm^{-1}): 3399, 3027, 2923, 2862, 1552, 1496, 1457, 1421, 1371, 1299, 1276, 1245, 1179, 1127, 1076, 1014, 928, 894, 738, 702, 606; HRMS Calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]{ }^{+}$: 307.16523, Found: 307.16596. $[\alpha]_{\mathrm{D}}{ }^{26}=36.9^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

(4S,6S,7S,8R,9aS)-4-benzyl-8-methyl-7-nitro-6-phenyloctahydropyrido[2,1-c][1,4]oxazin-8-ol (6a-trans)
Purified by flash chromatography (EtOAc/Hexane) as colorless oil (yield: 90%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $=7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.84(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.16$ $(\mathrm{m}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=$ $13.5 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{H} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=139.4$, $135.4,130.5,129.4,129.2,128.6,128.3,128.0,127.2,125.9,97.8,72.1,68.6,67.9,32.1,56.5,48.1,39.4$, 27.2, 27.1. IR (neat, cm^{-1}): 3397, 3025, 2922, 2860, 1553, 1499, 1454, 1420, 1370, 1286, 1272, 1246, 1178, 1127, 1075, 1013, 928, 893, 736, 701, 606; HRMS Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 383.19654$, Found: 383.19676. $[\alpha]_{\mathrm{D}}{ }^{26}=52.6^{\circ}\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right)$.

IV. ORTEP Drawing of the crystal structures

Figure 1. Perspective view of the molecular structure of $\mathbf{4 f}$ '-trans (ammonium chloride salt) with the atom labeling scheme. The thermal ellipsoids are scaled to enclose 50% probability. CCDC: 823511.

Figure 2. Perspective view of the molecular structure of 5a-trans with the atom labeling scheme. The thermal ellipsoids are scaled to enclose 50\% probability. CCDC: 823510.

Figure 3. Perspective view of the molecular structure of 6a-trans with the atom labeling scheme. The thermal ellipsoids are scaled to enclose 50\% probability. CCDC: 823509.
V. NMR spectra

 ~

$002 \quad 022$

08 $\begin{array}{r}- \\ 8 \\ 8 \\ \hline\end{array}$
00τ

