Supporting Information

"Iridium(I) Complexes with Hemilabile *N*-Heterocyclic Carbenes: Efficient and Versatile Transfer Hydrogenation Catalysts"

M. Victoria Jiménez, * Javier Fernández-Tornos, Jesús J. Pérez-Torrente, * Francisco J. Modrego, Sonja Winterle, Carmen Cunchillos, Fernando J. Lahoz, and Luis A. Oro

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, Universidad de Zaragoza-C.S.I.C., 50009-Zaragoza, Spain.

Table S1, Figure S1. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using $0.1 \mod \%$ of 7 in *i*PrOH at 80 °C with KOH as base.

Table S2, **Figure S2**. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.1 mol % of **6** in *i*PrOH at 80 °C with KOH as base.

Table S3, Figure S3. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using $0.1 \mod \%$ of 14 in *i*PrOH at 80 °C with KOH as base.

Table S4, **Figure S4**. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.04 mol % of **14** in *i*PrOH at 80 °C with KOH as base.

Table S5, **Figure S5**. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.02 mol % of **14** in *i*PrOH at 80 °C with KOH as base.

Table S6, **Figure S6**. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.01 mol % of **14** in *i*PrOH at 80 °C with KOH as base.

Table S7, **Figure S7**. Catalyst reaction order for the transfer hydrogenation of cyclohexanone with *i*PrOH at 80 °C for catalyst **14**.

Figure S8. ESI+ (*i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7).

Figure S9. ESI+ (*i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus KOH (t = 10 min).

Figure S10. MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (**7**).

Figure S11. MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (**7**) plus Na*i*PrO (t = 1 min).

Figure S12. Isotopic pattern for the peak at m/z 581.9 peak in the MALDI-TOF MS (linear mode, ditranol as matrix, *i*-PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus Na*i*PrO (t = 1 min).

Figure S13. MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus Na*i*PrO after completed reaction (t = 5 min).

Figure S14. MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus Na*i*PrO and cyclohexanone (t = 1min).

Figure S15. MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus Na*i*PrO and cyclohexanone after completed reaction (t = 20 min).

Computational information: Calculated data (B3LYP) for catalytic intermediates.

Determination of the pseudo-first order rate constants (kobs) for the transfer hydrogenation of

cyclohexanone:
$$-\frac{d[cyclohexanone]}{dt} = k_{obs}[cyclohexanone]$$

[A] and $[A]_0$ represent the concentration of cyclohexanone at a specific time and t = 0, respectively.

Table S1. Kinetic study on the transfer hydrogenation of cyclohexanone with catalyst precursor 7 with a catalyst/cyclohexanone/KOH ratio of 1:1000:5

Time (min)	[A]/[A] ₀	$\ln([A]/[A]_0)$
0	0,872509569	-0,13638166
5	0,74595374	-0,29309169
10	0,549935394	-0,59795447
15	0,485197487	-0,72319928
20	0,385825113	-0,95237109
25	0,339742851	-1,07956627
30	0,285196831	-1,2545757
35	0,229846441	-1,47034384
40	0,208009161	-1,57017316
45	0,187760309	-1,67258908
55	0,136122701	-1,99419859
65	0,097356121	-2,32937968
72	0,075120464	-2,58866227

Figure S1. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.1 mol % of 7 in *i*PrOH at 80 °C with KOH as base.

Table S2. Kinetic study on the transfer hydrogenation of cyclohexanone with catalyst precursor 6 with a catalyst/cyclohexanone/KOH ratio of 1:1000:5

Time (min)	[A]/[A] ₀	$\ln([A]/[A]_0)$
0	0,991803683	-0,008230091
5	0,863111616	-0,147211262
10	0,74787574	-0,290518438
15	0,642224232	-0,442817765
20	0,550517473	-0,596896583
25	0,446570652	-0,806157655
30	0,39090302	-0,93929578
35	0,357824204	-1,027713463
40	0,319628531	-1,140595799
45	0,286625388	-1,249579184
50	0,242477018	-1,416848342
55	0,222022703	-1,504975635
60	0,20199058	-1,599534218
70	0,175997033	-1,737288141
80	0,127390517	-2,060497974
90	0,112731891	-2,182742927
100	0,085188312	-2,462891038
110	0,068443089	-2,681752697

$$k_{obs} = 2.38 \times 10^{-2} \text{ min}^{-1}$$

$$\sigma k_{obs} = 5.60 \times 10^{-4}$$

$$R^{2} = 0.991$$

$$k_{obs} = 2.38 \pm 0.06 \times 10^{-2} \text{ min}^{-1}$$

Figure S2. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.1 mol % of 6 in *i*PrOH at 80 °C with KOH as base.

Table S3. Kinetic study on the transfer hydrogenation of cyclohexanone with catalyst precursor 14 witha catalyst/cyclohexanone/KOH ratio of 1:1000:5

Time (min)	[A]/[A] ₀	ln([A]/[A] ₀)
0	0,98140273	-0,01877237
1	0,76453984	-0,26848114
2	0,56518845	-0,51266655
3	0,4316984	-0,70261257
5	0,3316872	-1,10356292
7	0,19717493	-1,62366396
10	0,11249051	-2,17998525
11	0,09842715	-2,36589412
12	0,07526891	-2,58668816
15	0,04267942	-3,15403836
30	0,00178375	-6,32903862

$$k_{obs} = 2.08 \times 10^{-1} \text{ min}^{-1}$$

$$\sigma k_{obs} = 1.73 \times 10^{-3}$$

$$R^2 = 0.999$$

$$k_{obs} = 2.08 \pm 0.02 \times 10^{-1} \text{ min}^{-1}$$

Figure S3. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.1 mol % of **14** in *i*PrOH at 80 °C with KOH as base.

 Table S4. Kinetic study on the transfer hydrogenation of cyclohexanone with tcatalyst precursor 14

 with a catalyst/cyclohexanone/KOH ratio of 1:2500:5

Time (min)	[A]/[A] ₀	$\ln([A]/[A]_0)$
0	0,984002484	-0,016126858
1	0,932532036	-0,069851773
3	0,737823491	-0,304050656
5	0,547402483	-0,602570946
8	0,335438219	-1,092317486
10	0,229921076	-1,470019178
15	0,185594133	-1,684193072
20	0,140617575	-1,961711306
25	0,108088682	-2,224803257
30	0,06327641	-2,760242682
35	0,038573005	-3,255202599

 $k_{obs} = 8.58 \times 10^{-2} \text{ min}^{-1}$ $\sigma k_{obs} = 1.86 \times 10^{-3}$ $R^{2} = 0.996$ $k_{obs} = 8.60 \pm 0.02 \times 10^{-1} \text{ min}^{-1}$

Figure S4. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.04 mol % of **14** in *i*PrOH at 80 °C with KOH as base.

Table S5. Kinetic study on the transfer hydrogenation of cyclohexanone with catalyst precursor 14 with
 a catalyst/cyclohexanone/KOH ratio of 1:5000:5

Time (min)	[A]/[A] ₀	ln([A]/[A] ₀)
0	0,907832018	-0,09669592
3	0,842561517	-0,171308602
15	0,286598552	-1,249672816
55	0,150611062	-1,893054512
75	0,086233542	-2,450696063

Figure S5.- Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.02 mol % of 14 in *i*PrOH at 80 °C with KOH as base.

Table S6. Kinetic study on the transfer hydrogenation of cyclohexanone with catalyst precursor 14 with a catalyst/cyclohexanone/KOH ratio of 1:7500:5

Time (min)	[A]/[A] ₀	ln([A]/[A] ₀)
0	0,97220122	-0,028192483
3	0,63693438	-0,451088645
8	0,52639579	-0,641701896
13	0,46651386	-0,762467557
23	0,35921945	-1,023821803
33	0,28085693	-1,269909901
43	0,22524716	-1,490557009
53	0,18493951	-1,687726501
63	0,14986437	-1,898024612
73	0,11792113	-2,137739249
85	0,10139571	-2,288724524
95	0,08260422	-2,493694452

 $k_{obs} = 2.19 \times 10^{-2} \text{ min}^{-1}$ $\sigma k_{obs} = 6.10 \times 10^{-4}$ $R^{2} = 0.993$ $k_{obs} = 2.19 \pm 0.06 \times 10^{-2} \text{ min}^{-1}$

Figure S6. Time dependence of the catalytic transfer hydrogenation of cyclohexanone using 0.01 mol % of 14 in *i*PrOH at 80 °C with KOH as base.

Determination of the catalyst reaction order for the transfer hydrogenation of cyclohexanone with *i*-PrOH at 80 °C for catalyst 14.

$$-\frac{d[\text{cyclohexanone}]}{dt} = k[\text{Ir}]^{n}[\text{cyclohexanone}][\text{KOH}]^{m}$$
$$-\frac{d[\text{cyclohexanone}]}{dt} = k_{obs}[\text{cyclohexanone}]$$

Under the experimental conditions: $k' = k[\text{KOH}]^m$ and $k_{obs} = k'[\text{Ir}]^n$ Thus,

$$\ln k_{obs} = \ln k' + n \ln[\mathrm{Ir}]$$

Table S7. Kinetic study on transfer hydrogenation of cyclohexanone for catalyst **14** at different catalyst concentrations in *i*PrOH at 80 °C with [cyclohexanone] = 1 mol L^{-1} .

14: cyclohexanone:KOH	[14] (mol L ⁻¹)	$k_{\rm obs}({\rm min}^{-1})$	ln [Ir]	ln k _{obs}
1:1000:5	1.0 x 10 ⁻³	0.2084	-6,9078	-1,5683
1:2500:5	4.0 x 10 ⁻⁴	0.0858	-7,8241	-2,4557
1:5000:5	2.0 x 10 ⁻⁴	0.0395	-8,5172	-3,2315
1:7500:5	1.33 x 10 ⁻⁴	0.022	-8,9227	-3,7508

Figure S7. First order dependence on the catalyst for the transfer hydrogenation of cyclohexanone with *i*PrOH at 80 °C for catalyst **14**.

Mass spectra ESI+ and MALDI-TOF MS (linear mode, ditranol as matrix) and simulations:

Figure S8. a) ESI+ (*i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7); b) Simulation of the peak [MeHIm(2-methoxybenzyl)]⁺ at m/z 203.1, $C_{12}H_{15}N_2O$; c) Simulation of the peak $[7 + H]^+$ at m/z 583.1, $IrC_{20}H_{27}N_2OBr$; d) Simulation of the peak $[Ir(cod)(MeIm(2-methoxybenzyl))_2]^+$ at m/z 705.3, $IrC_{32}H_{40}N_4O_2$.

Figure S9. a) ESI+ (*i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus KOH (t = 10 min); b) Simulation of the peak [Ir(cod)(MeIm(2-methoxybenzyl))₂]⁺ at m/z 705.3, IrC₃₂H₄₀N₄O₂; c) Simulation of the peak [7 – Br + H]⁺ at m/z 504.2, IrC₂₀H₂₇N₂O; d) Simulation of the peak [7 – Br + C₃H₇O + K]⁺ at m/z 601.2, IrC₂₃H₃₃N₂O₂K.

Figure S10. a) MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7); b) Simulation of the peak $[7 - Br]^+$ at m/z 503.1, IrC₂₀H₂₆N₂O); c) Simulation of the peak $[7]^+$ at m/z 582.0, IrC₂₀H₂₆N₂OBr.

Figure S11. a) MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus Na*i*PrO (t = 1 min); b) Simulation of the peak [7 - Br]⁺ at m/z 503.1, IrC₂₀H₂₆N₂O; c) Simulation of the peak [IrH(cod)(MeIm(2-methoxybenzyl)) + Na]⁺ at m/z 526.6, IrC₂₀H₂₇N₂ONa.

Figure S12. a) Isotopic pattern for the peak at m/z 581.9 peak in the MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus Na*i*PrO; b) Simulation of the peak $[7 - Br + C_3H_7O + Na]^+$ m/z 585.2, IrC₂₃H₃₃N₂O₂Na; c) Simulation of the peak $[7]^+$ m/z 582.2, IrC₂₀H₂₆N₂OBr.

Figure S13. a) MALDI-TOF MS (linear mode, ditranol as matrix, *i*-PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus Na*i*PrO after completed reaction (t = 5 min); b) Simulation of the peak $[7 - Br + C_3H_7O + Na]^+$ at m/z 585.3, IrC₂₃H₃₃N₂O₂Na; c) Simulation of the peak $[7 - Br]^+$ at m/z 503.1, IrC₂₀H₂₆N₂O.

Figure S14. a) MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus Na*i*PrO and cyclohexanone (t = 1min); b) Simulation of the peak [7 - Br]⁺ m/z 503.2, IrC₂₀H₂₆N₂O; c) Simulation of the peak [7 - Br + C₃H₇O + Na]⁺ at m/z 585.3, IrC₂₃H₃₃N₂O₂Na.

Figure S15. a) MALDI-TOF MS (linear mode, ditranol as matrix, *i*PrOH) of [IrBr(cod)(MeIm(2-methoxybenzyl))] (7) plus Na*i*PrO and cyclohexanone after completed reaction (t = 20 min); b) Simulation of the peak $[Ir(cod)(MeIm(2-methoxybenzyl))_2]^+$ at m/z 705.3, $IrC_{32}H_{40}N_4O_2$; c) Simulation of the peak $[Ir(MeIm(2-methoxybenzyl))_2]^+$ at m/z 597.0, $IrC_{24}H_{28}N_4O_2$; d) Simulation of the peak $[7 - Br]^+ m/z$ 503.2, $IrC_{20}H_{26}N_2O$; e) Simulation of the peak $[IrH(cod)(MeIm(2-methoxybenzyl))_2]^+$ at m/z 526.6, $IrC_{20}H_{27}N_2ONa$.

Computational information.

Calculated data (B3LYP) for catalytic intermediates: coordinates in Å, energies in Hartree, and graphical representation.

Compound 19a

Sum of electronic and thermal Free Energies=

Atom	Х	Y	z
lr	-1.3573	-0.0184	-0.0115
N	-0.0371	-1 2693	2 4634
N	1 3579	-1 2253	0.8238
0	4 6194	-1 6718	-1 1068
č	0.0817	-0.8831	1 1585
C C	1 1439	-1 8361	2 9267
н	1 2/08	-2 2003	3 9361
C	2 0213	-1 8083	1 8950
ц	2.0210	-2 1365	1 8228
$\hat{\mathbf{C}}$	1 0155	1 0527	2 2020
L L	-1.2133	0.2560	J.2929 4 1047
	-0.9030	-0.3509	4.1047
	1 0012	-2.0000	2 6505
$\hat{\mathbf{C}}$	1 0037	-0.0230	-0 4702
L L	1.9907	-0.3372	1 0010
н	2 2154	-0.4333	-0.0218
$\hat{\mathbf{C}}$	3 1628	0.0160	-0.3210
č	2 9/66	1 3116	0.0270
ц	1 0202	1.6014	0.1499
$\hat{\mathbf{C}}$	1.9292	2 2107	0.4033
ц	3 8224	2.2107	0.2070
$\hat{\mathbf{C}}$	5.0224	1 9115	0.0590
L L	6 1 2 9 1	2 5022	-0.0397
$\hat{\mathbf{C}}$	5 5 2 5 7	2.5022	0.0303
L L	6.5452	0.0207	-0.5500
$\hat{\mathbf{C}}$	0.0400	0.2207	-0.7970
Č	5 0094	-0.3007	-0.0055
L L	6 2002	1 5070	-1.0000
н	5 7887	-3.1/16	-2.0070
	5.7667	2 0755	-1.0340
$\hat{\mathbf{C}}$	-2 6276	0 7781	-1.6776
н	-2.0270	1 68/17	-2 0208
$\hat{\mathbf{C}}$	-2.1002	0.8511	-0.4660
ц	-3 3517	1 8152	0.4003
$\hat{\mathbf{C}}$	-4 4288	-0 1008	-0.0200
н	-5 3680	0.1000	-0.0241
н	-4 6217	0.1277	1 0366
$\hat{\mathbf{C}}$	-4.0405	-1 5875	-0 1000
ц	-4 3863	-1.0578	-1 1738
н	-4.5005	-2 18/6	0.5435
C	-9 5449	-1 8187	-0.0386
н	-2.0442	-2 /808	0.0000
C	-1 6213	-1 8026	-1 1352
ц	-0.7550	-2.4610	-1.1002
C	-0.7333	-1 5170	-2 58/6
н	-2 4465	-2 3077	-2.0040
н	-1 0/3/	-1 3/31	-3 12/18
C	-2 887/	-0.2761	-2 7/87
н	-2 7186	0.168/	-3 7357
н	-3 9/26	-0 5685	-2 7302
0	-0.4504	1 7327	0 / 980
č	-0.4504	3 0315	0.4900
č	0.0137	3 5108	-1 0610
č	-0 7071	3 9670	1 2121
й	-0.7071	3 0740	-0 2/07
н		0.0742 0.8080	-0.2497
Н	-0 2388	2.0202	-1.8072
н	1 1162	3 5722	-0 75/1
н	-1 3610	3 617/	2 117⁄
н	0.3200	3 9738	1 6010
н	-0,9886	4.9960	1.0571

-1260.543416

Compound 19b Sum of electronic and thermal Free Energies=

Atom	X	Y	Z
lr	-1.4059	0.3125	-0.0214
Ν	0.3877	-1.5186	1.6923
Ν	1.3538	-1.0151	-0.1671
0	4.2613	-1.2592	-1.9607
C	0.2112	-0.7843	0.5509
Ċ	1.6123	-2.1765	1.6835
Ĥ	1.9334	-2.8030	2.5007
C	2,2191	-1.8609	0.5144
Ĥ	3.1703	-2.1481	0.0972
С	-0.5767	-1.6182	2,7791
Ĥ	-0.1525	-1.2179	3.7047
H	-0.8619	-2.6630	2,9364
H	-1.4556	-1.0374	2.4982
C	1.6203	-0.4655	-1.5066
Ĥ	0.6926	0.0254	-1.8067
н	1.8122	-1.3040	-2.1810
С	2.7662	0.5212	-1.5544
C	2.5226	1.8847	-1.3783
н	1.5045	2.2045	-1.1717
С	3.5570	2.8204	-1.4545
Ĥ	3.3476	3.8759	-1.3138
С	4.8538	2.3853	-1.7155
Ĥ	5.6686	3.1007	-1.7821
С	5.1259	1.0262	-1.8953
Ĥ	6.1416	0.7066	-2.0956
С	4.0855	0.0956	-1.8104
C	5.5429	-1.7357	-2.3454
Ĥ	5.8661	-1.2951	-3.2965
H	5.4399	-2.8154	-2.4650
н	6.2998	-1.5285	-1.5784
С	-2.8919	1.4880	-1.2241
Ĥ	-2.3717	2.4238	-1.4139
С	-3.3925	1.3055	0.0675
н	-3.2283	2.1181	0.7703
С	-4.4317	0.2810	0.4819
н	-5.4411	0.6207	0.2014
Н	-4.4218	0.2339	1.5769
С	-4.1593	-1.1315	-0.0853
н	-4.6716	-1.2640	-1.0448
н	-4.6014	-1.8759	0.5871
С	-2.6623	-1.4199	-0.2479
н	-2.3079	-2.2564	0.3546
С	-1.9352	-1.1770	-1.4582
Н	-1.1134	-1.8644	-1.6680
С	-2.5100	-0.5503	-2.7202
Н	-3.0903	-1.2861	-3.2997
Н	-1.6630	-0.2661	-3.3572
С	-3.3668	0.7082	-2.4445
Н	-3.3366	1.3646	-3.3213
Н	-4.4180	0.4297	-2.3169
0	-0.7005	2.0995	0.6171
С	0.2872	2.3573	1.5800
С	-0.2632	2.1978	3.0065
С	0.7985	3.7913	1.3753
Н	1.1460	1.6677	1.4681
н	-0.6474	1.1856	3.1589
н	0.5058	2.3963	3.7636
н	-1.0927	2.8965	3.1661
н	1.1997	3.9214	0.3664
н	-0.0280	4.4997	1.4999
Н	1.5863	4.0451	2.0947

-1260.542143

Compound 19c Sum of electronic and thermal Free Energies= -1260.541866

Atom	Х	Y	Z
lr	-1.5793	0.3237	0.1623
Ν	0.2927	-1.7527	1.4446
Ν	1.3070	-0.6509	-0.1072
0	3.3444	1.7472	0.3828
С	0.1082	-0.7373	0.5470
С	1.5736	-2.2814	1.3469
Н	1.9141	-3.0870	1.9779
С	2.2089	-1.5924	0.3678
Н	3.2079	-1.6810	-0.0246
С	-0.7016	-2.1978	2.4116
Н	-0.3439	-2.0252	3.4314
Н	-0.9103	-3.2637	2.2790
Н	-1.6104	-1.6200	2.2403
С	1.5602	0.3254	-1.1876
Н	1.1483	1.2778	-0.8474
Н	0.9904	0.0141	-2.0671
С	3.0181	0.4591	-1.5524
С	3.5204	-0.1232	-2.7174
Н	2.8420	-0.6924	-3.3483
С	4.8608	0.0166	-3.0871
Н	5.2278	-0.4428	-3.9992
С	5.7142	0.7561	-2.2726
Н	6.7590	0.8781	-2.5439
С	5.2418	1.3531	-1.1004
Н	5.9207	1.9275	-0.4818
С	3.8980	1.2070	-0.7377
С	4.1583	2.5460	1.2311
Н	4.9859	1.9644	1.6562
Н	3.5041	2.8885	2.0324
Н	4.5634	3.4141	0.6967
С	-3.1391	1.6255	-0.7954
Н	-2.7091	2.6212	-0.7204
С	-3.6573	1.0799	0.3819
Н	-3.5991	1.7013	1.2719
С	-4.5990	-0.1065	0.4712
Н	-5.6288	0.1994	0.2285
Н	-4.6175	-0.4269	1.5192
С	-4.1667	-1.3002	-0.4120
н	-4.6343	-1.2337	-1.4009
Н	-4.5510	-2.2266	0.0305
C	-2.6437	-1.4012	-0.5583
Н	-2.2268	-2.3313	-0.1/16
C	-1.9069	-0.7905	-1.6268
Н	-1.0153	-1.3288	-1.9559
	-2.5025	0.0770	-2.7259
	-2.9831	-0.5384	-3.5034
	-1.6700	0.5929	-3.2205
	-3.4949	1.1382	-2.1949
	-3.5065	1.9947	-2.0/02
	-4.3142	0.7303	-2.1977
Ĉ	-1.0014	2 0672	1.2724
Ĉ	-0.0247	2.0072	2.1042
č	-0.4004 0 /782	3 5166	2 1160
ц	0.4700	1 4056	1 0060
н	-0.8/83	0.6702	3 6/01
н	0.3231	1 8201	2.0401 2 2201
н	-1 3138	2 3657	3 0051
н	0.8480	3 7425	1 1110
н	-0.3435	4 2065	2 3384
Н	1.2849	3.7026	2.8381

Compound 19' Sum of electronic and thermal Free Energies= -1260.501099

Atom	X	Y	Z
lr	-1.4573	0.4072	0.1375
Ν	0.3103	-1.3671	1.8629
Ν	1.3576	-0.9380	0.0266
0	4.2523	-1.5540	-1.6549
С	0.1905	-0.6747	0.6944
С	1.5135	-2.0525	1.9174
Н	1.7891	-2.6593	2.7652
С	2.1749	-1.7841	0.7650
Н	3.1350	-2.1041	0.3968
С	-0.6931	-1.3698	2.9296
Н	-0.2113	-1.7037	3.8514
Н	-1.5110	-2.0516	2.6813
Н	-1.0670	-0.3487	3.0347
С	1.7324	-0.3917	-1.2908
н	0.8954	0.2346	-1.5970
Н	1.8208	-1.22/3	-1.9902
	3.0118	0.4197	-1.2910
	2.9000	1.8069	-1.1387
	2.0000	2.2790	-0.9906
с ц	4.1245	2.0000	-1.1799
C	5 3540	1 9669	-1 3882
н	6 2653	2 5567	-1 4271
C	5.4318	0.5818	-1.5548
Ĥ	6.3964	0.1172	-1.7201
С	4.2661	-0.1896	-1.5054
С	5.4615	-2.2108	-2.0106
Н	5.8683	-1.8192	-2.9507
Н	5.2050	-3.2635	-2.1386
Н	6.2202	-2.1176	-1.2236
С	-3.0489	1.6323	-0.9100
Н	-2.7047	2.6615	-0.8459
C	-3.5754	1.0635	0.2541
Н	-3.5824	1.6/32	1.1539
	-4.4581	-0.1712	0.3006
	-0.4007	0.0015	-0.0009
$\hat{\mathbf{C}}$	-4.5155	-0.4000	-0 5479
н	-4 3321	-1.3178	-1 5583
н	-4 2373	-2 2866	-0 1088
C	-2.3747	-1.3160	-0.6250
H	-1.9198	-2.2328	-0.2479
С	-1.6311	-0.6532	-1.6902
Н	-0.7377	-1.1859	-2.0200
С	-2.2730	0.1349	-2.8232
Н	-2.7012	-0.5292	-3.5916
Н	-1.4751	0.6987	-3.3237
С	-3.3417	1.1288	-2.3193
н	-3.3986	1.9867	-2.9989
Н	-4.3336	0.6658	-2.3420
0	-1.3095	1.4688	2.0682
	-0.5164	2.3580	1.3/2/
Ĉ	0.9202 -1 1287	2.4233	1.9133
й	-0 4348	1 9593	0 2520
н	1 3881	1 4366	1 9060
Н	1.5542	3.1162	1.3480
н	0.8762	2.7691	2.9528
н	-2.1531	3.7256	0.9052
н	-1.1652	4.1934	2.2906
Н	-0.5410	4.4349	0.6433

Compound 21

Sum of electronic and thermal Free Energies= -1067.445087

Acetone

Sum of electronic and thermal Free Energies= -193.108732

Atom	X	Y	Z
lr	-2.6573	-0.0967	-0.3399
Ν	-0.9051	-0.7323	2.1023
Ν	0.2905	0.0901	0.5100
0	3.3526	1.4477	-0.3602
С	-0.9966	-0.2532	0.8235
С	0.4045	-0.6770	2.5696
Н	0.6767	-1.0127	3.5579
С	1.1560	-0.1592	1.5691
Н	2.2096	0.0572	1.5005
С	-2.0406	-1.1897	2.8890
Н	-2.1502	-0.5783	3.7902
Н	-1.9127	-2.2377	3.1785
Н	-2.9327	-1.0841	2.2690
С	0.6841	0.7313	-0.7524
Н	-0.2018	0.6793	-1.3903
Н	1.4856	0.1420	-1.2043
С	1.1178	2.1722	-0.5813
С	0.1731	3.2009	-0.6048
Н	-0.8742	2.9365	-0.7268
С	0.5538	4.5374	-0.4654
Н	-0.1957	5.3223	-0.4868
С	1.9012	4.8510	-0.3048
Н	2.2144	5.8861	-0.2008
С	2.8674	3.8417	-0.2732
Н	3.9104	4.1044	-0.1423
С	2.4761	2.5052	-0.4033
Č	4.7437	1.7249	-0.2981
Ĥ	5.0719	2.3301	-1.1522
н	5.2459	0.7566	-0.3288
н	5.0138	2.2414	0.6318
С	-4.0699	0.3002	-2.0111
Ĥ	-4.0139	1.3706	-2.1952
C	-4.7875	-0.1088	-0.8750
Ĥ	-5.2563	0.6719	-0.2786
C	-5.3603	-1.4940	-0.6417
Ĥ	-6.3127	-1.6179	-1.1819
н	-5.6062	-1.5676	0.4243
C	-4.3876	-2.6423	-1.0098
Ĥ	-4.5262	-2.9341	-2.0563
Н	-4.6496	-3.5285	-0.4205
C	-2.9248	-2.2903	-0.7582
Ĥ	-2.4506	-2.8420	0.0517
C	-2 0673	-1 7293	-1 7227
Ĥ	-1 0010	-1 9192	-1 5982
Ċ	-2 4593	-1 3446	-3 1376
Ĥ	-2 4842	-2 2314	-3 7913
н	-1 6646	-0.7013	-3 5343
C	-3 8051	-0 5848	-3 2250
н	-3 8011	0.0384	-4 1273
н	-4 6310	-1 2015	-3 3580
н	-2 8580	1 4201	_0.0009 U 3√33
	2.0000	1.7201	0.2702

