Supporting Information for

Bio-inspired Design of a Cu-Zn-Imidazolate Mesoporous Silica Catalyst System for Superoxide Dismutation

Ya-Cheng Fang, ${ }^{a}$ Han-Chou Lin, ${ }^{\text {a }}$ I-Jui Hsu, ${ }^{\text {c }}$ Tien-Sung Lin, ${ }^{* b}$ and Chung-Yuan Mou ${ }^{*}$
${ }^{a}$ Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
${ }^{b}$ Department of Chemistry, Washington University, St. Louis. Missouri USA 63130
${ }^{c}$ Department of Molecular Science and Engineering, National Taipei University of Technology,

Taipei, Taiwan
*Corresponding authors: C.Y.M: E-mail: cymou@ntu.edu.tw; Tel: + 886-2-33665235; Fax: + 886-2-23660954. T.S.L: E-mail: lin@wustl.edu; Tel: + 1-314-9356580; Fax, + 1-314-9354481.

Supporting Information Available: The list of Abbreviations, syntheses of mesoporous silicas, results of physical measurements (ICP-MS, nitrogen adsorption isotherms, XRD spectra and EPR spectra) and IC_{50} values of mimic materials.

Abbreviation

CuIm CZS	Equivalent mixture of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and imidazolate anion (diethylenetriamine) $\mathrm{Cu}-\mu$-imidazolate- Zn (tris(2-aminoethyl)amine) perchlorate or $[(\mathrm{N} 3) \mathrm{Cu}-\mu-\mathrm{Im}-\mathrm{Zn}(\mathrm{N} 4)]\left(\mathrm{ClO}_{4}\right)_{3} \cdot \mathrm{CH}_{3} \mathrm{OH}$
CuZnSOD	Copper zinc superoxide dismutase
Im	Imidazole
MPS	Mesoporou silica
MSN-N3	N3(diethylenetriamine) silanol group supported on MSN
MSN-N3-CuIm	CuIm immobilized on MSN-N3 covalently
MSN-CZS-c	$\mathrm{ZnN4}$ binding to MSN-CuIm covalently
MSN-CZS-1 ${ }_{\text {sol }}$	Cu (II) and Zn (II) residue in MeOH after MSN loading CZS complex via ionic exchange
N3	Diethlenetriamine
N4	Tris(2-aminoethyl)amine
NBT	Nitro blue tetrazolium
$\mathrm{O}_{2}{ }^{-}$	Superoxide anion radicals
SBA-15-CuIm	CuIm immobilized on SBA-15-N3 covalently
SBA-15-CZS-c	ZnN 4 binding to SBA-15-CuIm covalently
SBA-15-CZS- $\mathrm{i}_{\text {sol }}$	SBA-15 loading with CZS complex via ionic exchange in solution
TMAC	N-trimethoxysilylpropyl-N,N,N-trimethyl-ammonium chloride
X-CZS-i	CZS immobilized in X mesoporous silica, such as MSN, SBA-15, MCM-41-SH, Al-MCM-41 and Al-SBA-15 via ionic exchange

Experimental Section: Syntheses of Mesoporous Silicas.

Synthesis of MSN. MSN is nano-sized MCM-41. The size range of MSN could be between 30
to $300 \mathrm{~nm} .{ }^{1}$ It suspended in water very well and can be used as nanocarrier. The protocol of preparation was given previously. ${ }^{2}$ Briefly, we synthesized MSN under low concentration of tetraethoxysilane (TEOS), surfactant and $\mathrm{NH}_{4} \mathrm{OH}$ as base in a two-step preparation process. First,
0.58 g of cetyltrimethyl-ammonium bromide $\left(\mathrm{C}_{16} \mathrm{TAB}\right)$ was dissolved in 300 g of 0.51 M $\mathrm{NH}_{4} \mathrm{OH}$ at $50{ }^{\circ} \mathrm{C}$, and 5 mL of 0.21 M dilute TEOS (in ethanol) was added. After stirring for 5 h , 5 mL of 0.88 M TEOS was added, followed by stirring for another 1 h . The solution was then aged at $50{ }^{\circ} \mathrm{C}$ for 24 h . Precipitate were separated by centrifuging at 18000 rpm for 20 min , washing, and re-dispersing with ethanol several times. Surfactant templates were removed by extraction in acidic ethanol (1 g of $\mathrm{HCl} / 50 \mathrm{~mL}$ of ethanol at reflux temperature for 24 h) and solids was re-dispersed in ethanol.

Synthesis of particulate SBA-15 and AI-SBA-15. A typical synthesis procedure using the triblock copolymer Pluronic P-123 as template was given previously. ${ }^{3}$ Briefly, we summarize as follows: 1.4 g of $\mathrm{P}-123$ was first dissolved in 50 mL deionized water at $45^{\circ} \mathrm{C}$. Second, 5.5 g sodium silicate solution $\left(27 \% \mathrm{SiO}_{2}\right)$ was adjusted to a pH value of 5.0 by titration with 1.2 M sulfuric acid under stirring at $45^{\circ} \mathrm{C}$. Then two solutions were mixed and aged for 3 h . After the gel was hydrothermally treated at $100^{\circ} \mathrm{C}$ for 24 h in a static autoclave, the mixture was filtered, washed with deionized water and calcined at $560{ }^{\circ} \mathrm{C}$ in air for 6 h . The Al-SBA- 15 was synthesized by adding sodium aluminate $\left(54 \% \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ to the solution of $\mathrm{P}-123$ in the first step as mentioned above. The molar composition was (37) SiO_{2} : (1) $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Synthesis of particulate Al-MCM-41-N ${ }^{+}$. First, a proper amount of 1.2 M sulfuric acid was added to sodium silicate solution $\left(27 \% \mathrm{SiO}_{2}\right)$ to adjust its pH value to 9 . The solution was added
to a $\mathrm{C}_{16} \mathrm{TAB}$ solution with sodium aluminate $\left(54 \% \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ under stirring at $45{ }^{\circ} \mathrm{C}$ and a gel mixture was formed. The molar composition was (37) SiO_{2} : (1) $\mathrm{Al}_{2} \mathrm{O}_{3}$. Aged for 3 h , the gel was then hydrothermally treated at $100{ }^{\circ} \mathrm{C}$ for 24 h in a static autoclave. The as-synthesized product was filtered and washed thoroughly with deionized water. Then the dried product was calcined at $560^{\circ} \mathrm{C}$ in air for 6 h to remove the organic templates. ${ }^{4}$

The positive charged Al-MCM-41- N^{+}was synthesized as follows: 0.0156 mL of N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMAC) was added to 0.3 g of Al-MCM-41 with 20 mL ethanol and stirred at reflux temperature for 24 h . The solids were separated by filtration, washing, and re-dispersing with ethanol several times to remove the TMAC residues.

Synthesis of MCM-41-SH. The materials MCM-41-SH provides stronger surface acidity because its silicon source is beta-zeolite seed. ${ }^{5,6}$ It was synthesized with short surfactant (myristyltrimethylammonium bromide $\left(\mathrm{C}_{14} \mathrm{TAB}\right)$) as template, and put small quaternary ammonium ions (TEAOH) together in order to separately develop a zeolitic nanocluster as the silica precursor. Originally, sodium aluminate, sodium hydroxide, and tetraethylammonium hydroxide ($20 \% \mathrm{wt} \%$ aqueous solution) were put together in a vessel. The fumed silica source was added to the mixture and stirred for 4 h . Then, the solution was transferred to autoclave and hydrothermal at $100{ }^{\circ} \mathrm{C}$ for 18 h to yield zeolite precursors. $\mathrm{C}_{14} \mathrm{TAB}$ was dissolved in deionized
water followed by adding zeolite precursors, and transferred to autoclave to be treated hydrothermally at $120^{\circ} \mathrm{C}$ for about 48 h . Then, the solution was cooled to room temperature and adjusted pH to 10 . The resulting mixture was hydrothermally treated again at $120{ }^{\circ} \mathrm{C}$ for 48 h . Finally, the solid sample was filtered, washed with deionized water and calcined at $580{ }^{\circ} \mathrm{C}$ for 3 h to remove $\mathrm{C}_{14} \mathrm{TAB}$. The molar ratio was (37) SiO_{2} : (1) $\mathrm{Al}_{2} \mathrm{O}_{3}$.

References

(1) Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y. Small 2009, 5, 1408- 1413.
(2) Lin, Y. S.; Tsai, C. P.; Huang, H. Y.; Kuo, C. T.; Hung, Y.; Huang, D. M.; Chen, Y. C.; Mou, C. Y. Chem. Mater. 2005, 17, 4570-4573.
(3) Yang, C. M.; Liu, P. H.; Ho, Y. F.; Chiu, C. Y.; Chao, K. J. Chem. Mater. 2003, 15, 275-280.
(4) Lin, H. P.; Mou, C. Y. J.Cluster Sci. 1999, 10, 271-293.
(5) Liu, Y.; Zhang, W. Z.; Pinnavaia, T. J. Angew. Chem. Int. Ed. 2001, 40, 1255-1258.
(6) Liu, L.; Chen, S. H.; Faraone, A.; Yen, C. W.; Mou, C. Y.; Kolesnikov, A. I.; Mamontov, E.;

Leao, J. J. Phys. Condens. Matter 2006, 18, S2261-S2284.

Table S1. Composition of $\mathbf{C u}(\mathrm{II})$ and $\mathbf{Z n}(\mathrm{II})$ Ions by ICP-MS

| After ionic exchange | $\mathrm{Cu} / \mathrm{Zn}$ | Amount of $\mathrm{Cu}(\mathrm{Zn})^{a}$ |
| :--- | :--- | :--- | :--- |
| MSN-CZS- $_{\text {sol }}{ }^{b}$ | 2.27 | $1526.12(691.31)$ |
| SBA-15-CZS- $\mathrm{i}_{\text {sol }}{ }^{b}$ | 3.78 | $1925(524)$ |
| a The unit of amount is ppb. ${ }^{b}$ MSN-CZS-i and | | |
| SBA-15-CZS-i were obtained in MeOH after loading CZS | | |
| complex via ionic exchange. | | |

Table S2. IC $_{50}$ Values of CZS Vomplex and Encapsulated Mimic Materials Before and After Hydrothermal Treatment for 24 h Measured by UV-Visible at 560 nm with Adjusting pH to 7.4

Sample	$\mathrm{IC}_{50}(\mu \mathrm{M})$			
	hydrothermal 0 h		hydrothermal 24 h	
CZS	59		62	
	59	58.6 ± 0.6	59	60.0 ± 1.5
	58		61	
MSN-CZS-i	36		45	
	37	36.5 ± 0.5	47	45.0 ± 2.0
	36.5		43	
SBA-15-CZS-i	47		54.2	
	46	47.0 ± 1.0	56.7	55.1 ± 1.4
	48		54.5	
Al-SBA-15-CZS-i	30		37	
	28	28.3 ± 1.5	34	34.6 ± 2.1
	27		33	
MCM-41-SH-CZS-i	18.5		25.4	
	18.5	18.3 ± 0.6	26	25.8 ± 0.4
	18		26.2	
Al-MCM-41-N ${ }^{+}$-CZS-i	2.3		7.8	
	1.9	1.9 ± 0.3	7	8.4 ± 0.6
	1.7		8.1	
MSN-CZS-c	44		43	
	43.5	43.8 ± 0.3	45	45.6 ± 3.1
	44		49	
SBA-15-CZS-c	56		60	
	55	55.3 ± 0.6	63	61.0 ± 1.7
	55		60	
MSN- N3-CuIm	117		124	
	118	117.7 ± 0.6	127	124.0 ± 3.0
	118		121	
SBA-15- N3-CuIm	122		122	
	119	120.0 ± 1.7	124	122.7 ± 1.2
	119		122	

Figure S1. Nitrogen adsorption isotherms of various MPS samples (inset: BJH pore size
distribution).

Figure S2. Small-angle powder XRD patterns of (a) MSN, (b) MSN-N3, (c) MSN-N3-CuIm, (d) MSN-CZS-c and (e) MSN-CZS-i.

Figure S3. Small-angle powder XRD patterns of (a) Al-MCM-41, (b) Al-MCM-41-N ${ }^{+}$and (c) Al-MCM-41-N ${ }^{+}$-CZS-i.

Figure S4. X-band EPR spectra of (a) MSN-N3-CuIm and (b) SBA-15-N3-CuIm at 77 K.

