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1 Non-dimensional form of the solution

All terms of the mobility matrix can be expressed as:
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and g = 1 forn = UF,q = 2forn = UCand n = QF, g = 3 fornp = QC,
while the dimensionless term ﬁl?J. depends only on the non-dimensional geometric
configuration of the system [Durlofsky et al., 1987]. Then, by dividing all terms
of Eq. (8) of the main paper by ¥ and substituting the previous relationship one
obtains:
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The matrix and the right hand side vector depend only on the non-dimensional
geometric configuration (remember that u®(x;)/va = (z;/a,0,0)" and 0™ (x;)/y =
(0,1/2,0)7). Consequently the vector of unknowns, too, must be a function only
of the non-dimensional geometry of the system and therefore it is the same for all
geometrically similar configurations.

2 Evaluation of internal forces: the case of a simple ag-
gregate

As an example of application of the method presented in the paper, we examine
the pentamer shown in Fig. 1, subjected to the external hydrodynamic forces fl.H



and to the external hydrodynamic torques clH acting on each single monomer i. In
addition each monomer exchanges internal forces and torques with its neighbours.
For instance, as detailed in the right part of Fig. 1, monomer 4 is subjected to
internal interactions due to the actions of monomer 2 (F,4 and C,4) and monomer
5 (Fs4 and Csy4). Consequently, the balance of forces on monomer 4 is:

£ +Fyy +Fsy = 0 (3)

where ff is known from the Stokesian dynamics solution. Similar balances can be
written for the other monomers, resulting in:

f{i + F21 =0
f§1+F12+F32+F42 =0
f§1 + F23 =0 (4)
ff+F24+F54 =0
f? +F45=0
By the action-reaction law we have F; ; = —F;; and hence we can remove four

of the unknowns from the above equations. In addition, due to the prescribed
mechanical equilibrium of the aggregate, the last equation is redundant and can
be deleted. Therefore we are left with an algebraic system of 4 (=n,-1) vectorial
equations in the four unknowns Fy;, Fy3, Fos, Fys.

Figure 1: Internal and external forces and torques acting on a monomer belonging
to a pentamer.

Internal moments are evaluated similarly. The balances of moment for each
monomer of our pentamer are:

C{I + CQ] + XZEX' XFy1 =0

Cgl + C12 + C32 + C42 + X1£X2 X F12 + X3£X2 X F32 + X4£X2 X F42 =0
C§{+C23+¥XF23=0 (5)
Cf+C24+C54+ X2£x4 XF24+ %XFM =0

C?+C45+%XF45:0




The hydrodynamic torques appearing in these equations are known from the Stoke-
sian dynamics simulation, while the internal forces are given by the solution of the
previous algebraic system. As before, the last equation is redundant and the action-
reaction law implies C; ; = —C;;. Therefore, in the end, we obtain again an easily
solvable algebraic system of (n, — 1) vectorial equations in the (n, — 1) unknown
internal torques Cpp, Co3, Cpy, Cys.

3 Validation of the method on test systems

3.1 Motion of the particles

In order to test the accuracy of the implemented method, we examined the case of
a doublet of equal sized and contacting spheres positioned on the x — z plane and
immersed in a simple shear flow with prescribed velocity gradient y = dgz"o.

Nir and Acrivos [1973] analytically solved the more general problem of the
motion of a sphere doublet (with each sphere of arbitrary size) in a linear shear
field at creeping flow conditions. Applying their solution to our case, the angular

velocity results [Derksen, 2008]:

wy = %)’/ [1+ kcos(26)] (6)

where k = 0.594 for two equal sized touching spheres and the angle 6 defines the
orientation of the doublet in the plane x — z. Since the structure is symmetric and
its center of mass is set on the vorticity axis (y) of the shear flow field, the doublet
simply rotates on the x — z plane and hence the other components of the angular
velocity are null.

As apparent from Fig. 2, our Stokesian dynamics data agree well with the ex-
act solution for the rotational velocity of the doublet (the largest error is about
1%). The velocity is a sinusoidal function of the orientation, having its maxima
at 0,7, 27, when the axis of the doublet is perpendicular to the undisturbed fluid
velocity, and minima at 7/2,37/2, when it is aligned with the plane of null fluid
velocity. The orientation-average value of w, is ¥/2, that is, the value at which a
solid sphere rotates in a shear flow. The time-average value of w, for the doublet
is instead smaller than /2, because the doublet spends more time in the low ve-
locity region of the curve than in the high velocity one. The dimensionless doublet
rotation period estimated by our explicit time-integration technique is y ¢, = 15.45,
which compares well with the exact value of 15.62 [Adler et al., 1981] and is sig-
nificantly larger that the value of 4 (=12.57) valid for a solid sphere rotating at the
constant velocity of y/2.

To assess the accuracy of the time integration method we examined the dynam-
ics of straight rigid chains of spheres of different length (from 3 to 10 monomers)
in the same hydrodynamic configuration as the doublet. In all cases the estimated
period of rotation agreed within 1-2% with the values reported in the literature [Zia
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Figure 2: Angular velocity of a doublet versus orientation. Continuous line: Stoke-
sian dynamics simulations; dashed line: exact analytical solution.
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Figure 3: Orientation of a rod-like aggregate of 8 spheres versus dimensionless
simulation time. Continuous line: Stokesian dynamics; circles: results by Karnis
et al.Karnis et al. [1966].

et al., 1967] and also the instantaneous orientation is predicted accurately, as evi-
denced by Fig. 3, where the values of the angle 6 formed by a chain of 8 spheres
with the z-axis obtained by Stokesian dynamics are compared with the theoretical



ones [Karnis et al., 1966].

3.2 Stress distribution

According to the solution by Nir and Acrivos [1973] the interparticle normal and
transverse forces acting on a doublet of equal sized touching spheres (i.e., the com-
ponents of the interaction force between the spheres acting along and perpendicular
to the line connecting the sphere centers) are:

2

N= ﬂﬂ%j/(h] + hy) sin(26) %)
le
T = an)'/hl cos(26) (8)

where h| and h, are respectively 4.463 and 7.767.

The solution is periodic over the interval 7 and, as it is shown in Fig. 4, a tensile
force is obtained for 8 between 0 and 7/2, while the other orientations give com-
pression. The extreme value is obtained at & = /4 for traction, while it is located
at —mr/4 for compression. In this case the discrepancy between exact solution and
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Figure 4: Normal and transverse forces at the inter-particle junction of a doublet
versus orientation. Continuous line: Stokesian dynamics simulations; dashed line:
exact analytical solution.

Considering that the FT-Stokesian dynamics method is based on a low order
approximation of the mobility matrix, it is apparent that the deviations are due to
the truncated higher order terms. However, it is interesting to notice that a global
property such as the angular velocity is predicted much more accurately than the
local interparticle interaction, probably because the combination of the terms of the



mobility matrix over the whole structure compensate for the error on the calculation
of each one of them.

4 Rotation dynamics of aggregates

The rotation dynamics of our clusters can be summarised in two variables: the
time-averaged angular velocity, w,, which determines the period of the oscilla-
tions, and the root mean square fluctuation of the angular velocity wy ,;, which
gives an indication of the amplitude of the oscillations. Fig. 5 shows the results
and compares quantitatively PC and CC aggregates. The markers in the Figure
represents the average response of each one of the studied groups of aggregates.
The responses of aggregates with the same value of D and k¢ but different n, are
very close and thus they are represented by a single marker in the graph.

Objects with perfect spherical symmetry have wy = 7/2 and w} ;¢ = 0, since
their angular velocity is constant. Our aggregates show smaller average velocity
and presence of fluctuations. Clearly the deviation from the spherical behavior is
more intense the more disordered is the aggregate and hence it is small for PC
systems and quite large for CC ones, and, in addition it increases with decreasing
fractal dimension. The great variability among CC aggregates is reflected by the

large standard deviations of wy and wy, ., for each examined population.
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Figure 5: Average value and rms fluctuation of the angular velocity of families of
aggregates of different fractal dimension in a shear flow.



References

PM. Adler, H.L. Takamura, K. Goldsmith, and S.G. Mason. Particle motions in
sheared suspensions. xxx. rotations of rigid and flexible dumbbells (theoretical).
J. Colloid Interface Sci., 83(2):502-515, 1981.

J.J. Derksen. Flow-induced forces in sphere doublets. J. Fluid Mech., 608:337—
356, 2008.

L. Durlofsky, J. F. Brady, and G. Bossis. Dynamic simulation of hydrodynamically
interacting particles. J. Fluid Mech., 180:21-49, 1987.

A. Karnis, H.L. Goldsmith, and S.G Mason. The flow of suspensions through
tubes: V. inertial effects. Can. J. Chem. Eng., 44(4):181-193, 1966.

A. Nir and A. Acrivos. On the creeping motion of two arbitrary-sized touching
spheres in a linear shear field. J. Fluid Mech., 59:209-223, 1973.

1.Y.Z. Zia, R.G. Cox, and S.G. Mason. Proc. R. Soc. London, A, 300:421-441,
1967.



