Supporting Information

Silica-coated S²⁻-enriched Mn-doped ZnS Quantum Dots as a Photoluminescence Probe for Imaging Intracellular Zn²⁺ Ions

Hu-Bo Ren[†], Bo-Yue Wu[†], Jia-Tong Chen[‡], and Xiu-Ping Yan^{†,*}

[†] Research Center for Analytical Sciences, College of Chemistry, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China

^tDepartment of Biochemistry and molecular biology, College of Life Sciences, Nankai University, Tianjin 300071, China

Table S1. Fitted Decay Lifetime Components for Mn-doped ZnS QDs (QDs-1), SiO₂-S-Mn-ZnSQDs in the Absence (QDs-2) and Presence (QDs-3) of Zn^{2+a}

	$\tau_{1} \left(ms\right)$	A ₁ (%)	$\tau_2 (ms)$	A ₂ (%)	$\tau_{3}(ms)$	A ₃ (%)	χ^2	$\tau_{av}\left(ms\right)$
QDs-1	0.19±0.04	62.6±8.2	0.65±0.07	32.7±6.0	3.8±0.3	4.7±0.5	1.035	0.51±0.008
QDs-2	0.11±0.01	85.5±17.1	0.55±0.06	13.3±2.2	7.3±1.4	1.2±0.2	0.9816	0.25±0.006
QDs-3	0.13±0.02	72.7±9.4	0.65±0.06	23.5±2.4	4.6±0.4	3.8±0.4	0.9438	0.42±0.005
^a F(t) = $A_1 e^{-t/\tau 1} + A_2 e^{-t/\tau 2} + A_3 e^{-t/\tau 3}$ The experimental conditions as in Figure 3B.								

Table S2. Average Abundance of Common Metal ions in Cells

Element	Concentration	Cells	References
K^+	$1.2\times 10^5\mu M$	Pancreatic β-Cells	S1
Na ⁺	$2.7\times10^4\text{-}3.3\times10^4~\mu M$	70Z/3 cell	S2
Ca ²⁺	0.1-0.145 µM	Glial cell	S3
Mg ²⁺	500 µM	Red blood cell	S4
Cd^{2+}	$0.16 \pm 0.04 \text{ fg cell}^{-1}$	HepG2 cells	S5
Cu ²⁺	$< 10^{-12} \ \mu M$	cells	S6
Hg^{2+}	$0.80 \pm 0.13 \text{ fg cell}^{-1}$	HepG2 cells	S5

Table	S3 .	Comparison	of the	Linear	Range	and	Detection	Limits	of	Several	Analytical	Methods
for Zn	2+											

References	Linear range	Detection limit	Detection method	
Anal. Chem., 2010,	0.2.20M	40 mM	Ratiometric fluorescent	
82, 3108-3113	0.2 - 20 μM	40 nivi	probe	
Anal. Chem., 2008,	5 500 ···M	2400 nM	Azamacrocycle activated	
80, 8260-8268	3-300 μM	2400 IIW	QDs	
Anal. Chim. Acta,	1 6 25M	1200 mM	CdTe QDs-based	
2011 , 687, 82-88	1.0-33 µW	1200 IIW	fluorescent probe	
This Mothod	0.2.15M	90 nM	SiO ₂ -S-Mn-ZnS QDs-based	
This Method	0.3-15 μM	80 11101	fluorescent probe	

Table S4. Comparison of the concentrations of Zn in the cell lysis for HepG2 cell, HepG2 cell after incubation with 100 μ M Zn²⁺, the Zn-incubated HepG2 cell after imaging test and removing the QD probe

Samples	The concentration of Zn / μM				
Sample 1: HepG2 cell	3.4				
Sample 2: HepG2 cell after incubation with 100 $\mu M~Zn^{2+}$	8.4				
Sample 3: Sample 2 after imaging test and then removing the	5.2				
QD probe	5.5				

Notes: a) The concentration of Zn in the cell lysis was determined by electrothermal atomic absorption spectrometric method (ETAAS); b) The procedures of the samples prepared for ETAAS were the same as for cell imaging; c)) The HepG2 cells were harvested by trypsinization (0.5 mL each well). Then, a suspension of HepG2 cells (0.5 mL) was dispersed in 0.5 mL PBS buffer, centrifuged at 1000 rpm for 15 min, washed with PBS buffer three times and resuspended in 0.75 mL of ultrpure water. The HepG2 cells were disrupted by sonication for 30 min at 0 °C and the lysate was filtrated with Amicon Ultra-4 centrifugal Filter Units (10 kDa) by centrifugation at 8000 rpm for 10 min to remove the homogenate of cell debris (or QDs). The obtained HepG2 cell lysis was acidified with HNO₃ for ETAAS detection.

Figure S1. The stability of SiO₂-S-Mn-ZnS QDs (230 mg L^{-1}) in 10 mM Tris-HCl buffer at pH 7.5.

Figure S2. Effect of S^{2-} concentration on the photoluminescence intensity of the Mn-doped ZnS QDs (10 µg mL⁻¹).

Figure S3. Photoluminescence intensity of the crude Mn-doped ZnS QDs (curve 1), silica coated-QDs without S^{2-} enrichment (curve 2), and SiO₂-S-Mn-ZnS QDs (165 mg L⁻¹, curve 3) in 10 mM Tris-HCl buffer at pH 7.5.

Figure S4. Distribution of the hydrodynamic diameter for (A) SiO₂-S-Mn-ZnS QDs (1.15 g L⁻¹) and (B) SiO₂-S-Mn-ZnS QDs added 200 μ M Zn²⁺ in 10 mM Tris-HCl buffer measured by dynamic laser scattering technique (DLS). The measurements were performed at 25 °C on a laser light scattering spectrometer (BI-200SM) equipped with a digital correlator (BI-9000AT) at 532 nm. The average hydrodynamic diameter of SiO₂-S-Mn-ZnS QDs and SiO₂-S-Mn-ZnS QDs added Zn²⁺ is 40.7 nm and 43 nm, respectively.

Reference

[S1] Arkhammar, P.; Nilsson, T.; Rorsman P.; Berggren, P.-O. J. Biol. Chem., 1987, 262, 5448-5454.

- [S2] Stanton, T. H.; Maynard, M.; Bomsztyk, K. J. Biol. Chem., 1986, 261, 5699-5701.
- [S3] Kudo, Y.; Ozakl, K.; Miyakawa, A.; Amano, T.; Ogura, A. Japan. J. Pharmacol, 1986, 41, 345-351.
- [S4] Millart, H.; Durlach, V.; Durlach, J. Magnesium Research, 1995, 8, 65-76.
- [S5] Chen, B. B.; Heng, S. J.; Peng, H. Y.; Hu, B.; Yu, X.; Zhang, Z. L.; Pang, D. W.; Yue X.;
- Zhu, Y. J. Anal. At. Spectrom., 2010, 25, 1931-1938.
- [S6] Rae, T. D.; Schmidt, P. J.; Pufahl, R. A.; Culotta, V. C.; O'Halloran, T. V. Science, 1999, 284, 805-808.