Supporting Information

Mapping of the Primary Mannose-Binding Site of Pradimicin A

Yu Nakagawa, ${ }^{,, \dagger}$ Takashi Doi, ${ }^{\ddagger}$ Yuichi Masuda, ${ }^{\ddagger, \S}$ K. Takegoshi, ${ }^{\ddagger}$ Yasuhiro Igarashi," and Yukishige Ito ${ }^{\star, \dagger, \perp}$
${ }^{\dagger}$ Synthetic Cellular Chemistry, RIKEN Advanced Science Institute
${ }^{\ddagger}$ Department of Chemistry, Graduate School of Science, Kyoto University
${ }^{{ }^{s}}$ Research Fellow of the Japan Society for the Promotion of Science.
"Biotechnology Research Center, Toyama Prefectural University
${ }^{\perp}$ Ito Glycotrilogy Project, ERATO, Japan Science and Technology Agency

Contents

I. Full results of feeding experiments with $\left[2-{ }^{13} \mathrm{C}\right] \mathrm{AcONa}$ and $\mathrm{L}-\left[5-{ }^{13} \mathrm{CH}_{3}\right]$ methionine II. Solution 1D- ${ }^{13} \mathrm{C}-$ NMR spectra of $\left[{ }^{13} \mathrm{C}_{12}\right]$ - and $\left[{ }^{13} \mathrm{C}_{2}\right]$ PRM-As
III. Signal assignment of the $\left[{ }^{13} \mathrm{C}_{12}\right]$ PRM $-\mathrm{A}_{2} / \mathrm{Ca}^{2+} /\left[{ }^{13} \mathrm{C}_{6}\right]$ Man- OMe_{2} complex

I. Full results of feeding experiments with $\left[2-^{13} \mathrm{C}\right] \mathrm{AcONa}$ and L-[5- $\left.{ }^{13} \mathrm{CH}_{3}\right]$ methionine

Detailed procedures of fermentation, harvesting, and purification of ${ }^{13} \mathrm{C}$-enriched PRM-As are described in Experimental Section. The ${ }^{13} \mathrm{C}$-population was calculated by solution ${ }^{1} \mathrm{H}$-NMR on the basis of integration values of proton signals split with ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ coupling.

Feeding schedule	Incubation time (day)						Isolation yield	\% atom ${ }^{13} \mathrm{C}$
	0	1	2	3	4	6		
1	100 mg		6.9 mg	<2				
2	50 mg		16.0 mg	ca. 20				

$\mathrm{L}-\left[5-{ }^{13} \mathrm{CH}_{3}\right]$ methionine feeding

Feeding	Incubation time (day)					Isolation	\% atom
schedule	0	1	2	3	6	yield	${ }^{13} \mathrm{C}$
1	100 mg	-	-	-		22.9 mg	ca. 45
2	100 mg	50 mg	-	-	Harvest	11.0 mg	ca. 55
3	100 mg	50 mg	50 mg	-	11.1 mg	ca. 60	
4	100 mg	50 mg	50 mg	50 mg		11.7 mg	ca. 65

II. Solution ${ }^{13} \mathrm{C}$-NMR spectra of $\left[{ }^{13} \mathrm{C}_{12}\right]$ - and $\left[{ }^{13} \mathrm{C}_{2}\right]$ PRM-As

Solution ${ }^{13} \mathrm{C}-$ NMR spectra of $\left[{ }^{13} \mathrm{C}_{12}\right]$ PRM-A (ca. 20 atom $\%{ }^{13} \mathrm{C}$) and $\left[{ }^{13} \mathrm{C}_{2}\right]$ PRM-A (ca. 65 atom $\%{ }^{13} \mathrm{C}$) were obtained in DMSO- d_{6} at $60^{\circ} \mathrm{C}$ on JEOL ECX 400 spectrometer at 100 MHz . Chemical shifts were recorded in ppm using a center peak of DMSO- d_{6} (39.5 ppm) as the internal reference. Signal assignment was performed on the basis of the previous data of non-labeled PRM-A, ${ }^{1}$ and confirmed by HMQC and HMBC spectra.
${ }^{1}$ Tsunakawa, M.; Nishio, M.; Ohkuma, H.; Tsuno, T.; Konishi, M.; Naito, T.; Oki, T.; Kawaguchi, H. J. Org. Chem. 1989, 54, 2532-2536.

III. Signal assignment of the $\left[{ }^{13} \mathrm{C}_{12}\right]$ PRM $-\mathrm{A}_{2} / \mathrm{Ca}^{2+} /\left[{ }^{13} \mathrm{C}_{6}\right]$ Man- OMe_{2} complex

The ${ }^{13} \mathrm{C}$ signals of the $\left[\mathrm{PRM}-\mathrm{A}_{2} / \mathrm{Ca}^{2+} / \mathrm{Man}-\mathrm{OMe}_{2}\right]$ complex using $\left[{ }^{13} \mathrm{C}_{12}\right]$ PRM-A and $\left[{ }^{13} \mathrm{C}_{6}\right]$ Man-OMe were assigned on the basis of solution ${ }^{13} \mathrm{C}$-NMR spectrum of $\left[{ }^{13} \mathrm{C}_{12]}\right.$ PRM-A and intramolecular cross peaks in 2D-DARR spectra of the complex using non-labeled Man-OMe. Soild-state $1 \mathrm{D}-{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra (Figure S 1) and 2D-DARR spectra of the complex using non-labeled Man-OMe (Figure S2) are shown below. The ${ }^{13} \mathrm{C}$ signals in the range of 101 to 108 ppm could not be assigned due to signal overlapping and the absence of intramolecular cross peaks in 2D-DARR spectra.

Figure 1S. Solid-state $1 \mathrm{D}-{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of the $\left[\mathrm{PRM}-\mathrm{A}_{2} / \mathrm{Ca}^{2+} / \mathrm{Man}-\mathrm{OMe}_{2}\right.$] complexes using $\left[{ }^{13} \mathrm{C}_{12}\right]$ PRM-A and $\left[{ }^{13} \mathrm{C}_{6}\right]$ Man-OMe (upper) or non-labeled Man-OMe (lower).

Figure 2S. 2D-DARR spectra of the $\left[\mathrm{PRM}-\mathrm{A}_{2} / \mathrm{Ca}^{2+} / \mathrm{Man}-\mathrm{OMe}_{2}\right]$ complexes using $\left.{ }^{13} \mathrm{C}_{12}\right]$ PRM-A and non-labeled Man-OMe at the mixing time of 20 ms (upper) and 500 ms (lower).

