Supporting Information

Mapping of the Primary Mannose-Binding Site of Pradimicin A

Yu Nakagawa,^{*,†} Takashi Doi,[‡] Yuichi Masuda,^{‡,§} K. Takegoshi,[‡] Yasuhiro Igarashi,^{II} and Yukishige Ito^{*,†,⊥}

[†]Synthetic Cellular Chemistry, RIKEN Advanced Science Institute [‡]Department of Chemistry, Graduate School of Science, Kyoto University [§]Research Fellow of the Japan Society for the Promotion of Science. ^{II}Biotechnology Research Center, Toyama Prefectural University [⊥]Ito Glycotrilogy Project, ERATO, Japan Science and Technology Agency

Contents

I. Full results of feeding experiments with [2-¹³C]AcONa and L-[5-¹³CH₃]methionine

- II. Solution 1D-¹³C-NMR spectra of [¹³C₁₂]- and [¹³C₂]PRM-As
- III. Signal assignment of the $[^{13}C_{12}]$ PRM-A₂/Ca²⁺/[¹³C₆]Man-OMe₂ complex

I. Full results of feeding experiments with $[2-^{13}C]AcONa$ and $L-[5-^{13}CH_3]$ methionine

Detailed procedures of fermentation, harvesting, and purification of ¹³C-enriched PRM-As are described in Experimental Section. The ¹³C-population was calculated by solution ¹H-NMR on the basis of integration values of proton signals split with ¹H-¹³C coupling.

[2-13C]AcONa	feedina
	loouing

Feeding	Incubation time (day)						Isolation	% atom
schedule	0	1	2	3	4	6	yield	¹³ C
1	100 mg	100 mg	100 mg	100 mg	100 mg	Honyoot	6.9 mg	< 2
2	50 mg	50 mg	50 mg	50 mg	50 mg	naivesi	16.0 mg	ca. 20

Feeding		Incul	Isolation	% atom			
schedule	0	1	2	3	6	yield	¹³ C
1	100 mg	_	_	_		22.9 mg	ca. 45
2	100 mg	50 mg	_	-	Horizot	11.0 mg	ca. 55
3	100 mg	50 mg	50 mg	_	narvest	11.1 mg	ca. 60
4	100 mg	50 mg	50 mg	50 mg		11.7 mg	ca. 65

L-[5-¹³CH₃]methionine feeding

II. Solution ¹³C-NMR spectra of [¹³C₁₂]- and [¹³C₂]PRM-As

Solution ¹³C-NMR spectra of [¹³C₁₂]PRM-A (ca. 20 atom % ¹³C) and [¹³C₂]PRM-A (ca. 65 atom % ¹³C) were obtained in DMSO- d_6 at 60°C on JEOL ECX 400 spectrometer at 100 MHz. Chemical shifts were recorded in ppm using a center peak of DMSO- d_6 (39.5 ppm) as the internal reference. Signal assignment was performed on the basis of the previous data of non-labeled PRM-A,¹ and confirmed by HMQC and HMBC spectra.

¹Tsunakawa, M.; Nishio, M.; Ohkuma, H.; Tsuno, T.; Konishi, M.; Naito, T.; Oki, T.; Kawaguchi, H. *J. Org. Chem.* **1989**, *54*, 2532-2536.

III. Signal assignment of the [¹³C₁₂]PRM-A₂/Ca²⁺/[¹³C₆]Man-OMe₂ complex

The ¹³C signals of the [PRM-A₂/Ca²⁺/Man-OMe₂] complex using [¹³C₁₂]PRM-A and [¹³C₆]Man-OMe were assigned on the basis of solution ¹³C-NMR spectrum of [¹³C₁₂]PRM-A and intramolecular cross peaks in 2D-DARR spectra of the complex using non-labeled Man-OMe. Soild-state 1D-¹³C-NMR spectra (Figure S1) and 2D-DARR spectra of the complex using non-labeled Man-OMe (Figure S2) are shown below. The ¹³C signals in the range of 101 to 108 ppm could not be assigned due to signal overlapping and the absence of intramolecular cross peaks in 2D-DARR spectra.

Figure 1S. Solid-state $1D^{-13}C$ -NMR spectra of the [PRM-A₂/Ca²⁺/Man-OMe₂] complexes using [$^{13}C_{12}$]PRM-A and [$^{13}C_{6}$]Man-OMe (upper) or non-labeled Man-OMe (lower).

Figure 2S. 2D-DARR spectra of the [PRM- $A_2/Ca^{2+}/Man-OMe_2$] complexes using [¹³C₁₂]PRM-A and non-labeled Man-OMe at the mixing time of 20 ms (upper) and 500 ms (lower).