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Well-tempered metadynamics

Metadynamics1 is a powerful technique for enhancing sampling in molecular dynamics simula-

tions. It is able to reconstruct the free-energy surface as a function of few selected degrees of

freedom, called collective variables (CVs), S. In metadynamics, an external history-dependent

bias potential which is a function of the CVs, is added to the Hamiltonian of the system. The bias

potential is built during the simulation as a sum of Gaussian functions centered on the previously

visited configurations in the CVs space discouraging the system from revisiting configurations that

have already been sampled. The free energy surface, as a function of the CVs, can be reconstructed

as the negative of the sum of the added gaussians. At variance with metadynamics, in the well-

tempered formalism2 the initial deposition rate ω0 of the bias potential decreases with the bias

accumulated over time. This is achieved by rescaling the Gaussian height W according to:

W = ω0τGe−
VG(S,t)
kB∆T (1)
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where τG is the Gaussian deposition stride, ∆T a temperature and VG(S, t) is the bias potential

accumulated in S over time t. At variance with standard metadynamics, the bias potential does not

fully compensate the FES, but it converges to:

VG(S, t→ ∞) =− ∆T
∆T +T

F(S) (2)

where T is the temperature of the system. In other words, at convergence the CVs are sampled at

a (fictitious) higher temperature T +∆T :

P(S, t→ ∞) ∝ e−
F(S)

kB(T+∆T ) (3)

Therefore, for ∆T → 0, ordinary MD is recovered, whereas the ∆T → ∞ corresponds to standard

metadynamics. In between one can regulate the extent of FES exploration by tuning ∆T . This

avoids overfilling and might save computational time when a large number of CVs are used. For a

comprehensive description of metadynamics see also.3

Collective variables

We analyzed both WS and US systems as a function of the following variables:

1. radius of gyration calculated on all the Cα (Rca) and the distance from the crystallographic

state in contact map space (Zmap). For the Rca we used the same formula utilized to compute

the radius of gyration for the hydrophobic core (Eq.1 in the main text). The distance from

the crystallographic state in contact map space was calculated as

Zmap =

√√√√Ncont

∑
i
(Ci(r)−Ci(Xray))2 (4)

where Ci(r) is the ith contact for the configuration r and Ncont is the total number of contacts

considered, and Ci(Xray) is the ith contact for the crystallographic state. We considered all
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the contacts between the Cα atoms present in the crystallographic structure and calculated

as

C(Ri, j) =
1− (

ri, j
r0
)

p

1− (
ri, j
r0
)

q (5)

where di j is the distance between the ith and jth Cα atoms of the protein backbone, r0 is

taken to be 8.5 Å, n and m are set to 6 and 10 respectively. All the contacts formed by the

j > ith Cα atoms have been considered.

2. the total number of hydrogen bonds (H-bonds) between backbone polar groups and sol-

vent (HBbb−solv) and Rca. The HBbb−solv has been calculated as the sum of contacts be-

tween backbone polar groups and water (HBbb−wat) plus those between backbone and urea

(HBbb−ure) :

HBbb−solv = HBbb−wat +HBbb−ure (6)

In detail

HBbb−wat = ∑
Ob_Hw

1− (dOb_Hw/2.5)80

1− (dOb_Hw/2.5)110 + ∑
Hb_Ow

1− (dHb_Ow/2.5)80

1− (dHb_Ow/2.5)110 (7)

and

HBbb−ure = ∑
Ob_Hu

1− (dOb_Hu/2.5)80

1− (dOb_Hu/2.5)110 + ∑
Hb_Ou

1− (dHb_Ou/2.5)80

1− (dHb_Ou/2.5)110 (8)

where Ob and Hb are oxygens and hydrogens of the backbone, Ow and Hw oxygens and

hydrogens of water and Ou and Hu oxygens and hydrogens of urea.

3. the total number of H-bonds between the side chain polar groups and solvent (HBside−solv)

and Rca. The HBside−solv has been calculated as the sum of contacts between the side chain

polar groups and water (HBside−wat) plus those with urea (HBside−ure) :

HBside−solv = HBside−wat +HBside−ure (9)

The formula and the switching function parameters are the same as for the case of HBbb−solv.
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4. the number of all H-bonds within the backbone (HBtot) and Rca. For HBtot the same formula

as in Eq.3 in the main text has been used, but here all the possible donor-acceptor H-bonds

have been taken into account. The parameters were 2.5 Å for r0, 20 and 80 for n and m.

5. the non native H-bonds (HBnonnat) calculated as the difference between HBtot and the num-

ber of the native H-bonds and Rca. For the native H-bonds we used the same formula as in

Eq. 3 in the main text with r0 = 2.5 Å, 20 and 80 for n and m. Only the six H-bonds of the

native structure have been considered in the sum.

6. the solvent accessible surface (SAS), calculated by means of g_sas tool of Gromacs4 on the

hydrophobic side chains of Trp, Tyr, Val and Phe.

7. in order to understand the urea mechanism of action we also reweighted in two separated

FESs the contribution of H-bonds between backbone and water (HBbb−wat) and those be-

tween backbone and urea (HBbb−ure) as a function of Rca.

H-bonds between solvent and side-chain groups

In Figure S1 the average number of sidechain-solvent H-bonds, HBside−solv, as a function of Rca

both in WS and US is reported. This analysis has to be compared to Fig.4-C of the manuscript,

where an equivalent analysis was performed for backbone-solvent H-bonds, HBbb−solv. Comparing

the two pictures it can be easily noticed that while the average number of both HBside−solv and

HBbb−solv is greater in US than in WS, the relative differences are much more pronounced for

HBbb−solv. The different behavior is striking in the region from Rca = 8 Å to Rca = 10 Å where the

average number of H-bonds in US is ∼30% larger than in WS considering HBbb−solv whereas the

relative difference is less than ∼10% for HBside−solv.

These results suggest that, at least for GB1 beta-hairpin, urea solution favors the formation of

both solvent-backbone and solvent-sidechain H-bonds but the former are likely to play a greater

role in urea-driven denaturation in agreement with experimental results.5
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Figure S1: Upper panel: the average number of sidechain-solvent H-bonds in WS and US as a
function of Rca; lower panel: the average number of backbone-solvent H-bonds in WS and US as
a function of Rca .

Protein-solvent potential energy in US

The different components of the total protein-solvent potential energy are reported for urea solu-

tion system. Particularly, the total protein-solvent potential energy is subdivided into four terms

corresponding to the Coulomb and Lennard-Jones contributions to the interaction between the pro-

tein and all urea or water molecules within 5 Å from the protein. The dependence of the average

of the single contributions on the radius of gyration (Rca) is reported as the differences relative to

the values at Rca = 7 Å which corresponds to the folded state (urea_LJ(Rca)-urea_LJ(Rca = 7 Å

) , and so on). The results clearly show that for what matters the interaction between protein and

urea molecules, the Coulomb term is greater than the Lennard Jones one. This finding thus agrees
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with the proposed mechanism of action of urea based on the formation of hydrogen bonds between

the protein and urea as the main driving force of unfolding mechanism.

Figure S2: Average values of the interaction energy contributions along the Rca of the protein with
the solvent enviroment. The differences relative to the values at Rca = 7 Å are reported.

Convergence of PTMetaD

We monitored the convergence of the PTMetaD simulation by calculating the free energy differ-

ence between folded and unfolded states as a function of sampling time:

∆FFU(t) =−
1
β

ln

( ∫ 3
0 e−βF(Zmap,t)dZmap∫ 35

3 e−βF(Zmap,t)dZmap

)
(10)

where β = (kBT )−1 and F(Zmap, t) is the free energy as a function of the collective variable Zmap

estimated by means of the reweghting alghoritm at time t. The folded (Zmap <= 3) and unfolded

(Zmap > 3) states were defined on the basis of the localization of minimum 1 in Figure 2 and 3 (See

main text).

The average values reported in Figure 4, 5, 6 and 7 of the main text were calculated as weighted

time averages as follows:

x =
i=T

∑
i

ωi 〈x〉i (11)
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Figure S3: Convergency plot of ∆FFU as a function of sampling time. Red line for US and blue
line for WS.

〈x〉i =
∫

xe−βF(x;ti)∫
e−βF(x;ti)

(12)

where F(x; ti) is the free energy dependence on x at simulation time ti computed using the

reweghting algorithm. We collected the reweighted free energy every 1 ns. On the basis of the

convergence properties of the reweighting algorithm,6 we used ωi ∝ t. The error bars were calcu-

lated as the standard deviation on the weighted mean x, as a function of time

σ =

√
∑

i=T
i ωi(〈x〉i− x)2

∑
i=T
i ωi

(13)
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