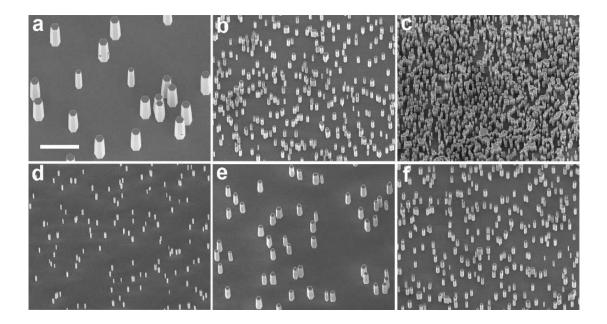
# Buffer Layer Assisted Epitaxial Growth of Perfectly Aligned Oxide Nanorod Arrays in Solution

Gong Ping Li<sup>†</sup>, Lin Jiang<sup>‡</sup>, Shi Jie Wang<sup>§</sup>, Xiao Wei Sun<sup>#</sup>, Xiaodong Chen<sup>‡</sup>, Tom Wu \*<sup>†</sup>

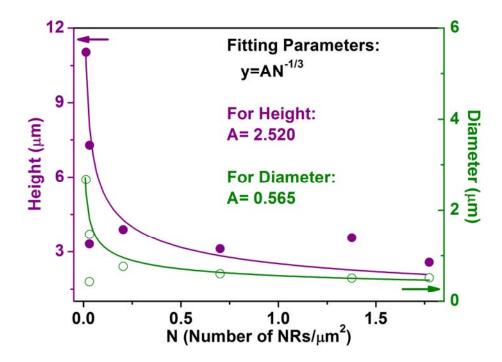
<sup>†</sup> Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore), E-mail: tomwu@ntu.edu.sg

<sup>‡</sup> School of Materials Science and Engineering, Nanyang Technological University, Singapore,
639798 (Singapore)


<sup>§</sup> Materials Science and Characterization Cluster, Institute of Materials Research and Engineering, Singapore 117602 (Singapore)

<sup>#</sup> School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore
639798 (Singapore)

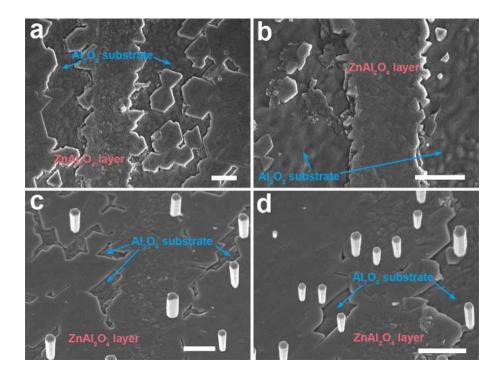
- 1. Additional SEM images of the ZnO NRs synthesized on the  $ZnAl_2O_4$  epilayer/  $\alpha$ -sapphire substrates
- 2. Fitting diameters and heights of NRs as functions of their density
- 3. SEM images of ZnO NRs grown on the  $\alpha$ -sapphire substrates partially covered with a thick ZnAl<sub>2</sub>O<sub>4</sub> layer
- 4. Growth behaviors of ZnO NRs on the  $ZnAl_2O_4/(0001)$  sapphire (c plane) substrates
- 5. Vertically aligned ZnO nanoneedles fabricated on the  $ZnAl_2O_4/\alpha$ -sapphire substrates
- 6. Growth behaviors of ZnO NRs on the MgAl<sub>2</sub>O<sub>4</sub> epilayer/ $\alpha$ -sapphire substrates


1. Additional SEM images of the ZnO NRs synthesized on the ZnAl<sub>2</sub>O<sub>4</sub> epilayer/  $\alpha$ -sapphire

substrates



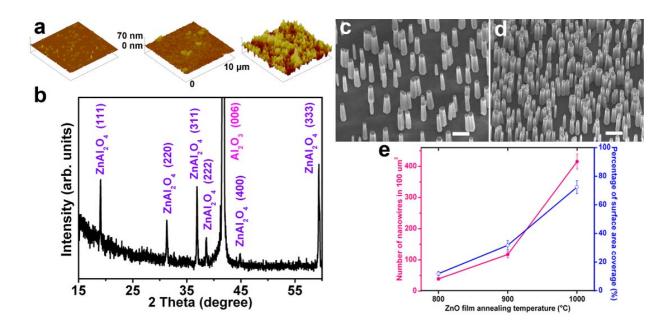
**Figure S1.** SEM images of the ZnO NRs grown on the  $ZnAl_2O_4/\alpha$ -sapphire substrates which were formed by annealing at (a) 800 °C, (b) 900 °C and (c) 1000 °C, with  $[Zn(NO_3)_2]=20$  mM. SEM images of the ZnO NRs grown on the  $ZnAl_2O_4/\alpha$ -sapphire substrates which were prepared at 900 °C, with  $[Zn(NO_3)_2]$ : (d) 5 mM (e) 10 mM and (f) 20 mM. All the figures have the same scale bar of 10  $\mu$ m.


2. Fitting diameters and heights of NRs as functions of their density



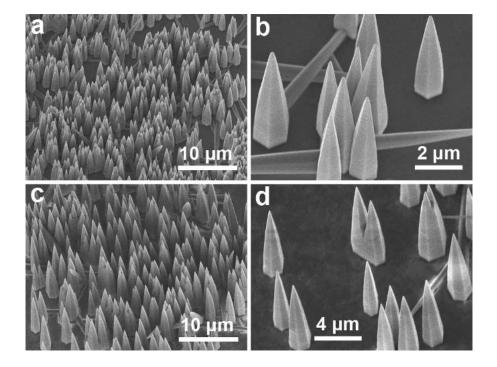
**Figure S2.** Fitting diameters and heights of NRs to a function that  $y = \frac{A}{\sqrt[3]{N}}$ . The constant A has a dimension of  $\mu m^{1/3}$ .

3. SEM images of ZnO NRs grown on the α-sapphire substrates partially covered with a thick


# ZnAl<sub>2</sub>O<sub>4</sub> layer



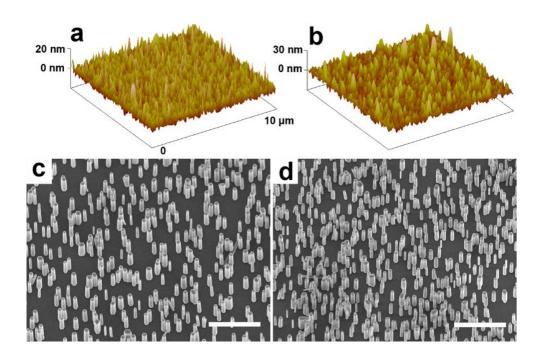
**Figure S3.** SEM images of the  $ZnAl_2O_4$  layer on the  $\alpha$ -sapphire substrate formed by annealing at 1000 °C before (a, b) and after (c, d) growing the ZnO NRs. The scale bars represent 1  $\mu$ m. It is clear that the ZnO NRs can only grow on ZnAl<sub>2</sub>O<sub>4</sub> covered regions, whereas the exposed sapphire surface cannot initiate any NR nucleation.


#### 4. Growth behaviors of ZnO NRs on the ZnAl<sub>2</sub>O<sub>4</sub>/ (0001) sapphire (c plane) substrates

For the (0001) sapphire (c plane) substrate, previous studies demonstrated that epitaxial ZnAl<sub>2</sub>O<sub>4</sub> layer can also be generated if the annealing temperature is higher than 850 °C,<sup>S1, S2</sup> which is consistent with our experiments. From the XRD measurements, we found that ZnAl<sub>2</sub>O<sub>4</sub> (111), (222) and (333) are the most intense peaks (Figure S4b). However, the presence of other strong ZnAl<sub>2</sub>O<sub>4</sub> peaks implies a poor epitaxial relationship at the interface. Moreover, the surface rms roughness of the ZnAl<sub>2</sub>O<sub>4</sub> layer is much larger than that formed on  $\alpha$ -sapphire at the same temperature (Figure S4a). These factors result in the NRs grown on the ZnAl<sub>2</sub>O<sub>4</sub>/c-sapphire substrate showing poorer orientation and density controls than the ZnAl<sub>2</sub>O<sub>4</sub>/ $\alpha$ -sapphire counterpart (Figure S4c-e).



**Figure S4.** (a). AFM micrographs of the ZnAl<sub>2</sub>O<sub>4</sub>/c-sapphire substrates created by annealing at 800, 900 and 1000 °C, the rms roughnesses are 2.415 nm, 4.204 nm, 19.365 nm, respectively. (b). XRD spectra of the ZnAl<sub>2</sub>O<sub>4</sub>/c-sapphire substrate formed at 1000 °C. SEM images of ZnO NRs grown on the ZnAl<sub>2</sub>O<sub>4</sub>/c-sapphire substrates which were created by annealing at (c) 800 °C and (d) 900 °C, [Zn(NO<sub>3</sub>)<sub>2</sub>]= 20 mM. The scale bars represent 2  $\mu$ m. (e). Dependences of density and surface area coverage on the ZnAl<sub>2</sub>O<sub>4</sub> forming temperature.


## 5. Vertically aligned ZnO nanoneedles fabricated on the ZnAl<sub>2</sub>O<sub>4</sub>/α-sapphire substrates



**Figure S5.** Based on previous reports,<sup>S3</sup> we modified the morphology of the ZnO NRs to hexagonal nanoneedles through adding 1, 3-diaminopropane (DAP) into the reactive solution. The ZnO nanoneedles were fabricated on the  $ZnAl_2O_4/\alpha$ -sapphire substrates which were prepared at 900 °C.  $[Zn(NO_3)_2] = 20$  mM, [DAP]: (a, b) 140 mM and (c, d) 160 mM. The nanoneedles have perfect vertical alignment, but in some cases there exits coalescence at their bottom.

### 6. Growth behaviors of ZnO NRs on the MgAl<sub>2</sub>O<sub>4</sub> epilayer/α-sapphire substrates

In order to illustrate the generality of our surface engineering protocol on realizing the epitaxial growth of ZnO NRs, we also fabricated MgAl<sub>2</sub>O<sub>4</sub> epilayers on  $\alpha$ -sapphire substrates in order to compare with the ZnAl<sub>2</sub>O<sub>4</sub> counterpart on assisting the growth of ZnO NRs. MgO layers were first sputtered on the substrates using DC sputtering. After annealing in air at high temperatures ( $\geq$ 800 °C) and subsequent etching in diluted acid to remove the residual MgO, the MgAl<sub>2</sub>O<sub>4</sub> layers with different roughness were obtained. We found that the magnitude of roughness tunability for MgAl<sub>2</sub>O<sub>4</sub> layer is much smaller than that of ZnAl<sub>2</sub>O<sub>4</sub> with the same synthesis parameters, indicating that its modulation for ZnO NR density is less effective than ZnAl<sub>2</sub>O<sub>4</sub> (Figure S6). Furthermore, the hydrolysis of MgO makes the preparation of clean MgAl<sub>2</sub>O<sub>4</sub> layers much more difficult. This control experiment further underscores the unique advantages of ZnAl<sub>2</sub>O<sub>4</sub> as buffers layers to support the growth of high quality ZnO NRs.



**Figure S6.** AFM micrographs of the MgAl<sub>2</sub>O<sub>4</sub>/ $\alpha$ -sapphire substrates produced by annealing at (a) 800 °C and (b) 900 °C, the rms roughnesses are 3.225 nm and 4.024 nm, respectively. (c) and (d) Corresponding SEM images of the ZnO NRs grown on the substrates (a) and (b) at 70 °C with [Zn(NO<sub>3</sub>)<sub>2</sub>]= 20 mM. All the scale bars represent 10 µm.

## **REFERENCES:**

- (S1) Wessler, B.; Lange, F. F.; Mader, W. J. Mater. Res. 2002, 17, 1644.
- (S2) Gu, S. L.; Zhang, R.; Sun, J. X.; Zhang, L.; Kuech, T. F. Appl. Phys. Lett. 2000, 76, 3454.

(S3) Lee, Y. J.; Sounart, T. L.; Liu, J.; Spoerke, E. D.; McKenzie, B. B.; Hsu, J. W. P.; Voigt, J. A. *Cryst. Growth Des.* **2008**, *8*, 2036.