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(1) The smooth cut-off of the charge density and the patch up of the 

three pieces in Figure 2: 

    The charge densities in the quantum dot part (both the left and right pieces) as well as the molecule 

part (the central piece), as illustrated in Figure 2, are computed individually. To patch them up for the 

total charge density, a mask function )(rw


 is introduced which varies smoothly from 0 to 1 when 

r


crosses the dashed line in Figure 2 from the quantum dot side to the central molecule side. More 

specifically, )1/(1)( )(  bdaerw


,   otherwise )(rw


 is 0 in the quantum dot part and 1 in the molecule 

part.  Here, || dashrrd


 is the shortest distance between r


and the red dashed line. In the calculations, 

a and b are taken as 12.8Å
-1

 and 0.469Å, respectively. The result is insensitive to the exact values of a 

and b. The total charge density is then calculated as )())(1()()()( rrwrrwr QDcenter


  . It is worth 

mentioning that in order to yield the correct total charge, one might need to rescale the center charge 

density )(rcenter


  very slightly.

 



 

2 
 

(2) The details of the surface molecule attachment calculations:    

    The attachment between the molecule Sn2S6 and a flat CdSe (1010) surface is modeled by a three-

layer slab adsorbed with the molecules. An orthorhombic supercell with dimension of 14.69 x 12.72 x 

33.03 Å
3
 is used in the calculations, in which the slab is periodic in the x-y plane with a 10 Å vacuum 

region along the z direction. The separation between the neighboring molecules is 10 Å so that the 

interactions between the molecules can be neglected. The total energy minimizations were performed 

using density functional theory (DFT)
1, 2

 in local density approximation
3
, as implemented in the 

plane-wave based VASP code
4, 5

. Ultrasoft pseudopotentials
6
 with a kinetic energy cutoff of 400eV 

were used to ensure the total energy convergence. Several initial molecule attachment configurations 

are tested, followed by atomic relaxations. The two lowest energy attachments after the atomic 

relaxations are shown in Figure 3. 

 

(3) Electron-phonon coupling:  

     The electron-phonon coupling is calculated by the charge patching method. There are two terms in 

the single particle Hamiltonian derivative RH


 / . The first term is the change of the nonlocal 

potential in Eq.(1), which is calculated using the conventional method as in a total energy plane wave 

code. The second term is the change of the local potential, especially the Hartree potential. This is due 

to two parts; one is the displacement of the nuclei charge, which is represented by the local part of the 

pseudopotential. Another part is due to the change of valence electron charge density, and 

consequently the change of the Hartree potential. We have used the CPM
7
 to calculate the change of 

the charge density when an atom is moved. Note, only the charge motifs near the atom R


 need to be 

changed. This makes the method extremely efficient. This method has been used to calculate the 

electron-phonon coupling in organic polymer systems
8-10

.  Here, in inorganic nanocrystals, we found 

that it is necessary to screen the long range part of the potential change )(rV


  due to the atomic 

displacement at R


. This is because, in CPM, the charge density is not calculated self-consistently; as 

a result, the long range electric field is not screened. We have thus multiplied a fixed spherical 

screening function |)(| Rrf


  on top of )(rV


 (caused by a single atom displacement at R


), here 

)(xf is a function which is close to 1 when x is near zero, and roughly 1/ε when x is large, and ε is 
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the bulk dielectric constant. In practice, the )(xf ’s for Cd displacement and Se displacement are also 

different. We obtain this mask function from bulk system calculations where direct DFT calculations 

have been carried out. )(xf  is computed as the ratio of the )(rV


  obtained from CPM and DFT 

methods. We then use this mask function in the calculation of quantum dot systems.  

    After )(xf  is multiplied to the local potential change )(rV


 , we can now calculate the electron-

phonon coupling constants: jiji RHRC 


 /)(, . The results are shown in Figure S1 for the 

smallest quantum dot where the RH


 /  can also be calculated directly from self-consistent DFT 

calculations. About 20 i and j are used. One can see that the overall CPM error is probably about 30% 

especially when the largest electron-phonon couplings are considered. Furthermore, there is no 

systematic error.  

 

Figure S1: A comparison between the calculated electron-phonon couplings (in a.u.) for a few atomic 

displacements (near the center and near the surface) from the CPM and the direct DFT-LDA 

calculations.  
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(4) The quantum dot size scaling of the reorganization energy λ: 

    The calculated λ is plotted as a function of the inverse of the total number of atoms N in Figure S2. 

A straight line relationship is observed. Such scaling feature can be understood as the following. For 

each atomic movement, the electron-phonon coupling constant scales as 1/Ω, where Ω is the volume 

of the quantum dot. This is due to the normalization of the wave function
i . For a harmonic 

oscillator with a spring constant of k, if an external force )(, RC ii


is applied to this oscillator, the 

relaxation energy (reorganization energy) will be 22

, /1/)(5.0  kRC ii


. Since the number of atoms is 

also proportional to Ω, the overall reorganization energy λ is proportional to 1/ Ω.  

 

Figure S2: The calculated reorganization energies  as a function of the inverse of the number of 

atoms (1/N). The green line indicates a linear fit. 
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(5) Local density of state calculations:  

The generalized moment method (GMM)
11

  is used to calculate the local density of states (LDOS) at 

the molecule Sn2S6.  The results are shown in Figure S3, Figure S4 for the two different attachments, 

respectively. From the LDOS, one can see where the local states start to appear. Comparing that to 

the QD conduction band minimum (CBM), we can get the barrier height ΔE as shown in Figure 1(C). 

We found that such ΔE is about 2.4 eV for the large QDs. For the smaller QDs, this barrier height 

drops to ~1.8 eV due to quantum confinement effect of the CBM.  

 

Figure S3: The local density of states at the molecule site for type I attachment. The eigen-energies of 

CBM for different QD sizes (the number of atoms is indicated in the top right corner of each panel) 

are shown by the green vertical lines. E is the estimated barrier height in the over-the-barrier 

activation mechanism. 
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Figure S4: The local density of states at the molecule site for type II attachment. All the notations are 

the same as in Figure S3. 

 

(6) Mobility calculation for the supercrystal:  

    With hopping rates between quantum dots at hand, one can calculate the electron mobility at low 

carrier density and low electric fields using the following procedure. Let 1

ab be the hopping rate 

between two quantum dots a and b. It is known
12

 that the electrical transport at low electric field and 

low carrier density is fully equivalent to the transport in a network of conductors where any two 

neighboring quantum dots have been connected with a conductance 

TkneTkneGG BbabBababaab // 1212   
 
where 

an  is the equilibrium occupation of state a given by the 

Boltzmann distribution, e is the elementary charge and 
Bk is the Boltzmann constant.  
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    We construct the portion of the cubic supercrystal with 
321 nnn  quantum dots (of the 

size LLLL zyx  ), where 50321  nnn , i.e. a conductor network of the same dimensions. The 

equivalent conductance of such network is found by solving the linear equations for the potential of 

nodes in the circuit. These equations read  
j

ijji GVV 0)( where j is a neighbor of i. Periodic 

boundary conditions for 
iV are applied in two directions (say y and z). For the x direction, we have 

0iV for the first y-z plane, and UVi  for the n1-th y-z plane. A linear equation is then formed to 

solve for 
iV

 

in the interior planes. The current 
xI through a plane perpendicular to the x direction is 

then calculated and the equivalent conductance is found as UIG xx / . The mobility in x-direction is 

then given by neLGxx / , where n is the average concentration of carriers. Using the size 

fluctuation, we have randomly assigned the size, hence 
i on each QD according to the fluctuation. 

We have calculated the 
abG  using Eq.(2). To simulate the effects of loose attachment we have also 

multiplied 
abG with a random number uniformly distributed among 0 and 1. 
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