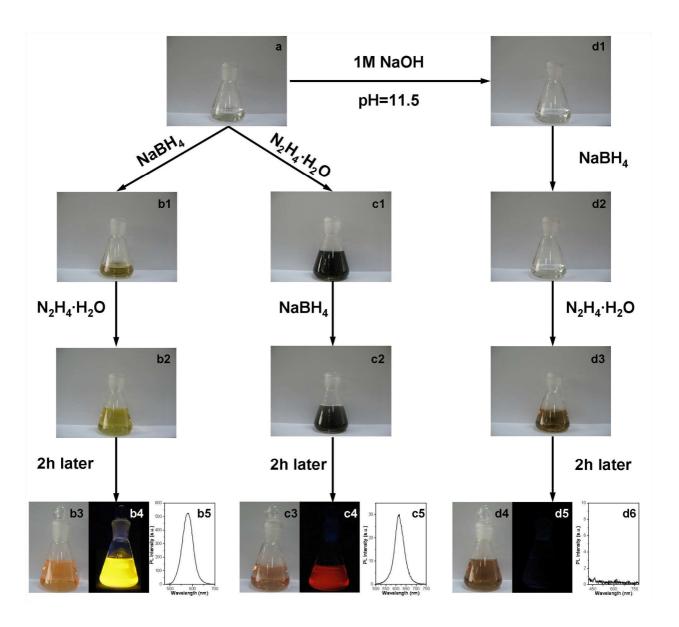
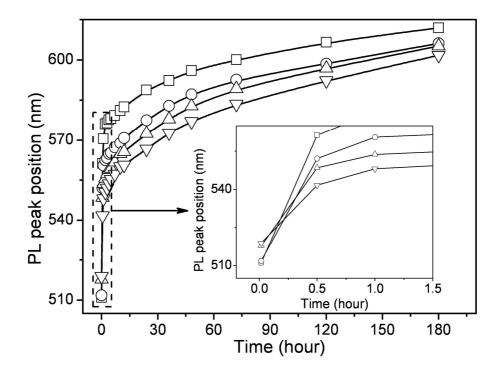
Supporting Information:

Simple Synthesis of Highly Luminescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality


Ding Zhou, Min Lin, Zhaolai Chen, Haizhu Sun, Hao Zhang*, Hongchen Sun, and Bai Yang

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry,


Jilin University, Changchun 130012, P. R. China

E-mail: hao_zhang@jlu.edu.cn

Figure S1. Photographic illustration of the influence of alkalinity and the addition sequence of NaBH₄ and N₂H₄·H₂O on the nucleation process. Figure (a): the mixture of CdCl₂, MPA and Na₂TeO₃.

Figure S2 Temporal evolution of the PL peak positions of CdTe QDs with the addition of different amounts of NaBH₄, 1.5 mg/mL (star), 0.75 mg/mL (triangle), 0.375 mg/mL (circle), and 0.125 mg/mL (square). The growth of QDs was performed through a room-temperature N_2H_4 -promoted approach, and the QDs to N_2H_4 molar was fixed at 1:5000. The concentration of QDs was referred to Cd²⁺.

The PLQY of MBA-stabilized CdTe QDs is 2.6%, which is estimated at room temperature using quinine in aqueous $0.5 \text{mol/L H}_2\text{SO}_4$ as PL reference.