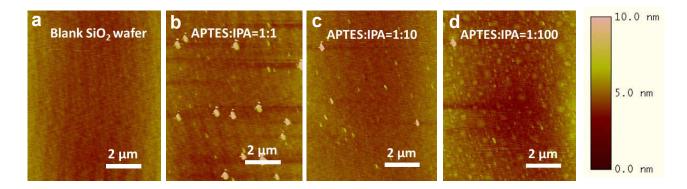
Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays

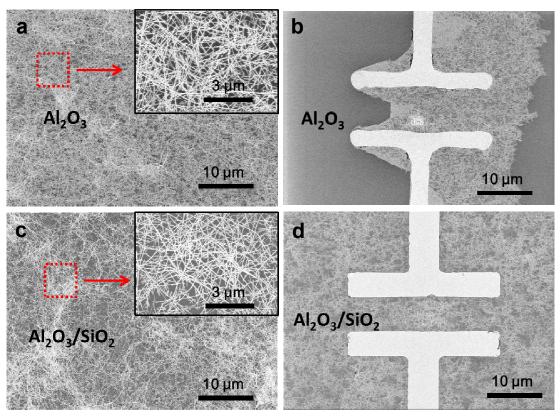
Jialu Zhang^{†,§}, Yue Fu^{†,§}, Chuan Wang^{†,§}, Po-Chiang Chen[§], Zhiwei Liu[‡], Wei Wei[‡], Chao Wu[‡], Mark E. Thompson[‡], and Chongwu Zhou^{*,§}

[§]Department of Electrical Engineering and [‡]Department of Chemistry, University of Southern


California, Los Angeles, California 90089, United States

* Corresponding author: <u>chongwuz@usc.edu</u>.

[†] These authors contributed equally to this work.


Supporting Information

1. AFM image of the APTES coated SiO₂ surface

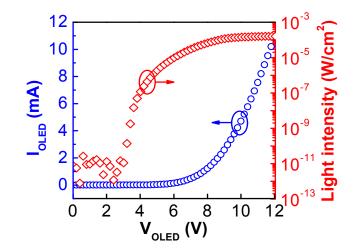

Figure S1. AFM image of SiO₂ surface coated with APTES solution with different concentration. (a) Blank SiO₂ surface. (b-d) SiO₂ surface functionalized with solution of APTES and IPA volume ratio of 1:1, 1:10 and 1:100, respectively. From the images, one can find that the SiO₂ surface in Figure S1b has many impurities, while the one in Figure S1d shows that APTES did not cover the whole surface.

Figure S2. (a,c) SEM images of the separated nanotube thin-films deposited on Al_2O_3 and Al_2O_3/SiO_2 surface, respectively (b,d) SEM images for the same samples after one step of photolithography. Nanotubes on the Al_2O_3 sample would peel off while the ones on Al_2O_3/SiO_2 bilayer dielectric still stick to the surface.

3. Two terminal measurement of the OLED

Figure S3. Two terminal measurement of the OLED showing the current through the OLED (I_{OLED}) (red line) and OLED light intensity (green line) versus the voltage applied across the OLED (V_{OLED}).