Supporting Information

Mode-Specific Chemisorption of CH₄ on Pt{110}-(1×2) Explored by First-Principles Molecular Dynamics

M. Sacchi^{*}, D. J. Wales and S. J. Jenkins

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK

Email: ms857@cam.ac.uk

Appendix I

The symmetrised internal coordinates described in Section 3.3 do not provide a perfectly accurate representation of the normal modes of the isolated methane molecule because the v₃ and v₄ modes, belonging to the T₂ representation, cannot be described as neither pure stretching or bending modes, but are instead a combination of bond elongations (S_{3x} , S_{3y} , S_{3z}) and angular deformations (S_{4x} , S_{4y} , S_{4z}). Symmetrised coordinates have the advantage of being represented by simple linear combinations of either bond elongations or angle deformations, but, even in the simple quadratic force-field approximation, the use of this set of coordinates implies the presence of cross terms (with the associated force constant F_{34}) in the expression describing the quadratic potential:¹

$$2V = F_{11}S_1^2 + F_{22}(S_{2a}^2 + S_{2b}^2) + F_{33}(S_{3x}^2 + S_{3y}^2 + S_{3z}^2) + F_{44}(S_{4x}^2 + S_{4y}^2 + S_{4z}^2) + 2F_{34}(S_{3x}S_{4x} + S_{3y}S_{4y} + S_{3z}S_{4z})$$

In this study, we have transformed the symmetrised *S* coordinates (eq 1) into normal mode coordinates by diagonalization of the force constant matrix associated with nuclear motion along S_3 and S_4 .¹ Since the off-diagonal terms in the force constant matrix are relatively small, only a minor correction to the expression of S_3 and S_4 coordinates is needed to transform them into genuine normal mode coordinates (*Q*): $Q_{3i} = aS_{3i} + bS_{4i}$ and $Q_{4i} = aS_{4i} + bS_{3i}$, where i = x, y, z (a = 0.997595, b = 0.069318), while the normal mode coordinates for v_1 and v_2 are unchanged ($Q_1 = S_1, Q_2 = S_2$).

The vibrational force constants (F_{11} , F_{22} , F_{33} , F_{34} and F_{44}) associated with each mode have been calculated from the vibrational frequencies obtained by normal mode analysis for the isolated methane molecule, following the procedure described by Jones and Goldblatt.² Transformation into normal coordinates eliminates the cross term F_{34} and the remaining force constants have the values indicated in Table S1.

Table S1. Force constants associated with CH_4 normal modes (J/m^2) .

$F(\mathbf{v}_1)$	5.34083×10^2
$F(v_2)$	0.44139×10^{2} 5.40695×10^{2}
$F(v_3)$	5.40695×10^{2}
$F(v_4)$	0.39237×10^{2}

REFERENCES

- (1) Raynes, W. T.; Lazzeretti, P.; Zanasi, R.; Sadlej, A. J.; Fowler, P. W. *Molecular Physics* 1987, *60*, 509 525.
- (2) Jones, L. H.; Goldblatt, M. Journal Of Molecular Spectroscopy 1958, 2, 103-112.