Supporting Information

Unravelling the conformational plasticity of the extracellular domain of a prokaryotic nAChR homologue in solution by NMR

Christos T. Chasapis^a, Aikaterini I. Argyriou^a, Pierre-Jean Corringer^b, Detlef Bentrop^c and Georgios A. Spyroulias^a*

^a Department of Pharmacy, University of Patras, GR-26504, Patras, Greece.
 ^b Institut Pasteur, Groupe Récepteurs-Canaux, F-75015 Paris, France
 ^c Institute of Physiology II, University of Freiburg, D-79104 Freiburg, Germany.

• To whom correspondence should be addressed. Phone: (+30) 2610-969950, 951. Fax: (+30) 2610-969950. Email: <u>G.A.Spyroulias@upatras.gr</u>

Materials and Methods

Sample preparation:

The GLIC_{ECD} construct (1) was expressed in *Escherichia coli* and purified using affinity chromatography via a C-terminal His6 tag. The U-²H/¹⁵N/¹³C labeled sample for NMR studies was prepared using minimal (M9) medium supplemented with 0.1 g/l (¹⁵N,¹³C,²H) ISOGRO[®] (Sigma), 1 g/l ¹⁵NH₄(SO₄)₂ and 4 g/l of ²H₇/¹³C₆-glucose as nitrogen and carbon sources, respectively, in 99.9% ²H₂O. Protein samples for NMR experiments were prepared in a mixed solvent of 90% H₂O (50 mM KPi, pH 6.9) and 10% ²H₂O.

A brief overview of the selective labeling efforts is given in Table S1.

<u>Selective unlabeling strategy in *E. coli* BL21(DE3)</u>: The amino acid selective unlabeling of ¹⁵N-GLIC_{ECD} with ¹⁴N-Lys, ¹⁴N-Arg, ¹⁴N-His, and ¹⁴N-Asn, respectively, was achieved by addition of 150 mg/l of each unlabeled amino acid (except 1 g of ¹⁴N-Asn) to ¹⁵N labeled minimal (M9) medium one hour prior to induction by IPTG.

<u>Selective ¹⁵N labeling strategy in *E. coli* BL21(DE3)</u>: The amino acid selectively ¹⁵N labeled samples of $GLIC_{ECD}$ were expressed in otherwise unlabeled minimal (M9) medium. To incorporate ¹⁵N labeled Lys, Leu, Val, or Ile into ¹⁴N-GLIC_{ECD}, 150 mg/l ¹⁵N-Lys, 85 mg/l ¹⁵N-Leu (with 510 mg/l each of unlabeled Val and Ile), 170 mg/l ¹⁵N-Val (with 1g/l each of unlabeled Leu and Val) and 90 mg/l of ¹⁵N-Ile (with 540 mg/l each of unlabeled Leu and Val), respectively, were added to the culture one hour prior to induction.

Selective ¹⁵N labeling strategy using the auxotrophic *E. coli* strain DL39: All the amino acid selective ¹⁵N labeling of $GLIC_{ECD}$ using *E. coli* DL39 was done on unlabeled minimal (M9) medium, supplemented with the following mixture of unlabeled amino acids: 150 mg/l Phe, 90 mg/l Tyr, 400 mg/l Asp, 200 mg/l Leu, 200 mg/l Ile, 200 mg/l Val, 400 mg/l Ala, 200 mg/l Asn, 500 mg/l Gly, 100 mg/l Met and 210 mg/l Lys. To incorporate ¹⁵N labeled Leu, Phe, Ala, or Tyr into ¹⁴N-GLIC_{ECD}, the respective ¹⁴N amino acid was omitted from the above mixture. Instead, 200 mg/l, 150 mg/l, 300 mg/l or 70 mg/l, respectively, of the desired ¹⁵N amino acid were added to the medium at the beginning of the cell culture.

NMR experiments:

The complete set of heteronuclear NMR experiments used for the sequence specific assignments of H^N, N, Ca, Cb and C' is listed in Table S2. Internal 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) was used as a chemical shift reference for ¹H. The backbone resonance assignments are available from the BioMagResBank (http://www.bmrb.wisc.edu/) under accession no. 17695.

The ¹⁵N *R*1 and *R*2 relaxation rates (2) and $\{^{1}H^{N}\}^{-15}N$ NOE values (3) were measured at 600 MHz (298 K) on a Bruker Avance spectrometer equipped with a TXI CryoProbe TM [Figure S2].

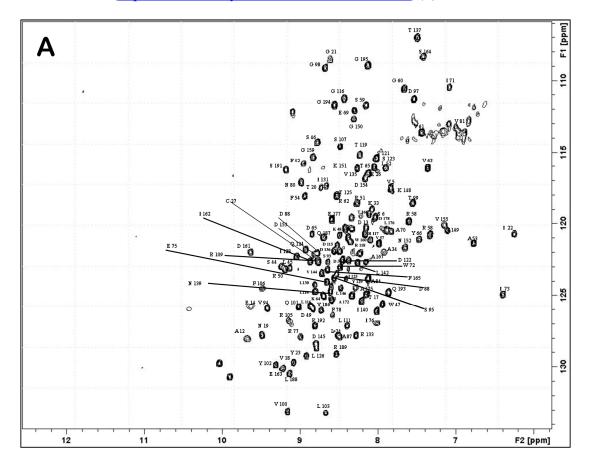
Molecular Dynamics Simulations and Normal Mode Analysis.

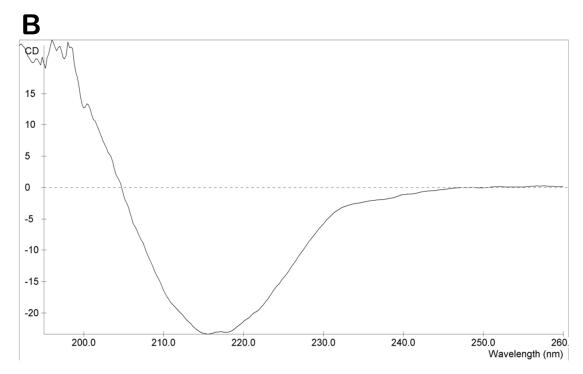
Both calculations were performed on the ECD of one subunit from the crystal structure of the pentameric full-length GLIC (PDB: 3EAM). Chain A with the minimal number of undefined residues was selected.

 Table S1:
 Overview of the selective labelling efforts for the preparation of GLIC_{ECD} samples for NMR studies.

¹⁵ N Selective la	beling using prototro	phic E. coli BL2	1(DE3):		
Amino acid	¹⁴ N (reverse labeling)	¹⁵ N labeling	Scrambling		
Leu	 ✓ 		+		
Arg	 ✓ 		-		
Val	 ✓ 		+		
Phe	 ✓ 		+		
Lys	I V		-		
Ala	 ✓ 		+		
Lys		✓	_		
Leu		✓	+		
¹⁵ N Leu+ ¹⁴ N (Val+Ile)		✓	+		
15 N Val + 14 N (Leu+Val)	✓		_		
15 N lle + 14 N (Leu+Val)	✓		-		
His	 ✓ 		-		
Asn	 ✓ 		-		
¹⁵ N selective	abeling using auxo	trophic E. coli	DL39:		
Amino acid	¹⁵ N labeling		Scrambling		
Leu			-		
Phe	<u> </u>		_		
Ala			_		
Tyr	↓		-		
Asp	✓		+		
Glu	↓ ✓		+		

Table S2:	Acquisition parameters of the NMR experiments performed on GLIC _{ECD} at 298 K.
-----------	--


Experiments ^a	Dimension of acquired data (nucleus)			Spectral width (ppm)		n ^b	
	t ₁	t_2	t ₃	F ₁	F_2	F ₃	
[¹ H- ¹⁵ N]-TROSY-HSQC	192(¹⁵ N)	1024(¹ H)		28.4	15.5		64
TROSY-HNCA	72(¹³ C)	38(¹⁵ N)	1024(¹ H)	31.55	28.4	12.5	64
TROSY-CBCA(CO)NH	64(¹³ C)	38(¹⁵ N)	1024(¹ H)	60.2	28.4	12.5	64
TROSY-CBCANH	64(¹³ C)	38(¹⁵ N)	1024(¹ H)	60.2	28.4	12.5	64
TROSY-HN(CO)CA	56(¹³ C)	38(¹⁵ N)	1024(¹ H)	28.4	12.5	12.4	80
HNCO	48(¹³ C)	38(¹⁵ N)	1024(¹ H)	14.0	24.3	12.0	16
¹⁵ N-edited [¹ H- ¹ H]-NOESY	92(¹ H)	38(¹⁵ N)	1024(¹ H)	12	24.3	12.9	48
$^{15}N R_1$	256(¹⁵ N)	1024(¹ H)		26	15		24
¹⁵ N R ₂	256(¹⁵ N)	1024(¹ H)		26	15		24
steady-state heteronuclear NOEs	256(¹⁵ N)	1024(¹ H)		26	15		56


^a Data acquired on a Bruker Avance 600 MHz spectrometer equipped with a 5 mm triple resonance cryoprobe (TXI) with pulsed field gradients along the z-axis. The ¹⁵N-edited NOESY was acquired with a mixing time of 100 ms.

^b number of acquired scans.

All 2D and 3D spectra were collected at 298 K, processed with the Bruker software TOPSPIN and analyzed with the programs CARA (4) and XEASY (5).

Figure S1. (A) 2D ¹H-¹⁵N TROSY NMR spectrum and (B) Circular dichroism spectrum of GLIC_{ECD} at pH 7.0, 298 K (20 mM TrisHCl.). Data analysis was performed using the server DICHROWEB (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) (6)

Figure S2. (Upper panel) Assignment status of the $GLIC_{ECD}$ -{Gly2His6} polypeptide at 298 K (yellow: assigned, light blue: unassigned, dark blue: Pro). The secondary structure in the crystal structure of $GLIC_{ECD}$ (PDB: 3IGQ) as attributed by PROCHECK (7) is shown above the sequence. (Lower panel) ¹⁵N R_1 , R_2 , and heteronuclear {¹H^N}-¹⁵N NOE values.

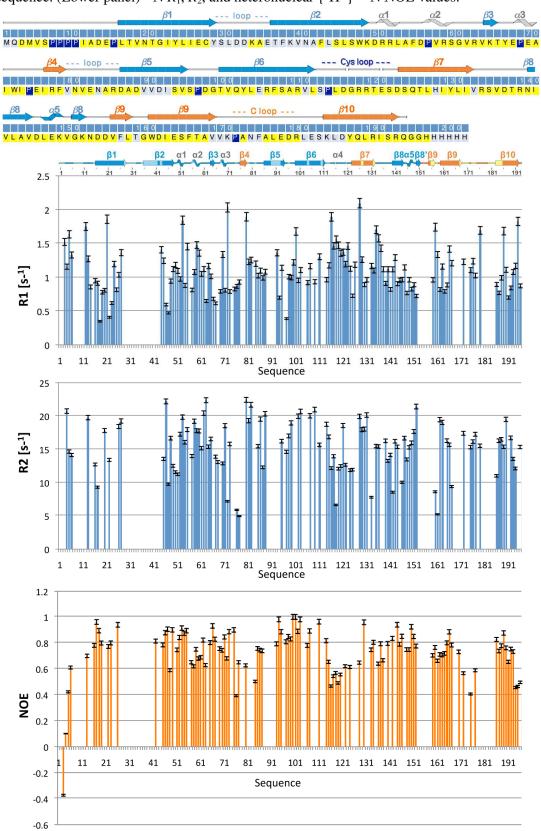


Figure S3. Atomic RMS fluctuations extracted from a 10 ns MD calculation of $GLIC_{ECD}$ (PDB: 3EAM, chain A) in water as a function of sequence. Unassigned regions of $GLIC_{ECD}$ are also shown for comparison. Assigned residues are indicated with "0", unassigned ones are indicated with "1". An ECD of the pentameric structure of full-length GLIC (3EAM) was chosen instead of a chain of the hexameric $GLIC_{ECD}$ structure (3IGQ), since the subunits of the latter contain undefined residues.

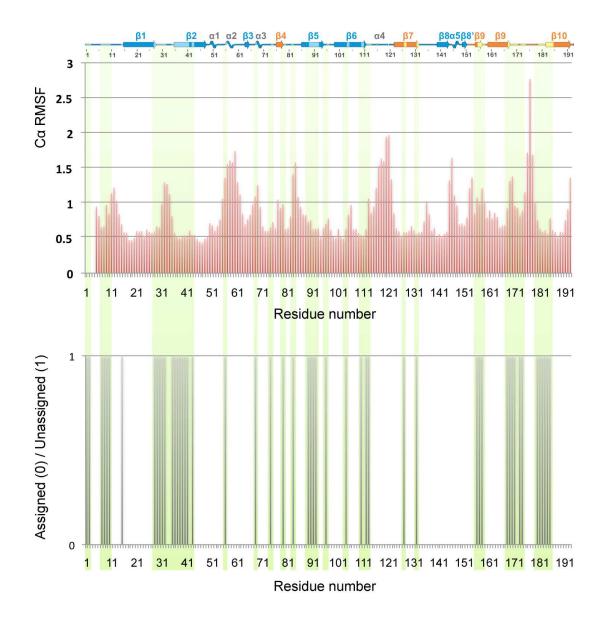
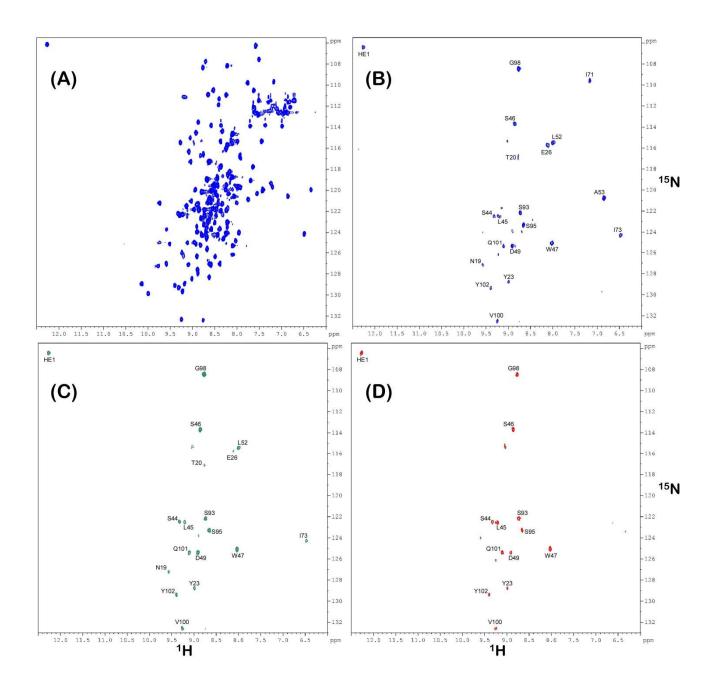
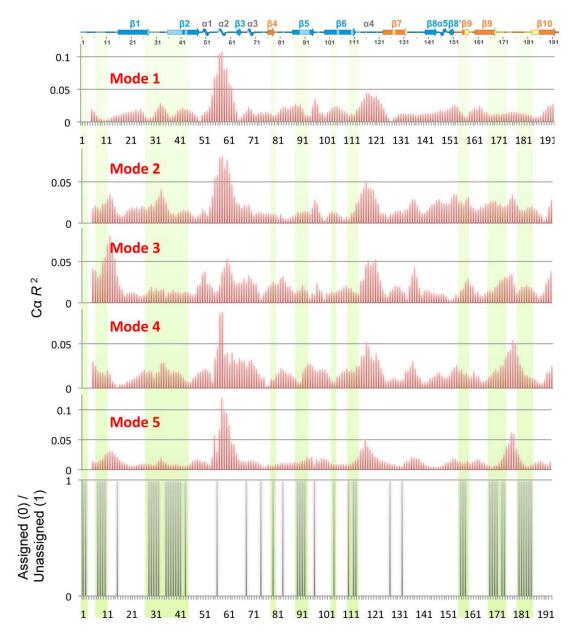




Figure S4. H/D exchange of GLIC_{ECD} as a function of time monitored through ¹H-¹⁵N HSQC NMR spectra: (A) ¹H-¹⁵N HSQC spectrum of deuterated GLIC_{ECD} (600 MHz; 50 mM KP_i, pH 7.0, 298 K), (B) ¹H-¹⁵N HSQC spectrum of GLIC_{ECD} after 90 min of H/D exchange, (C) ¹H-¹⁵N HSQC spectrum of GLIC_{ECD} after 23 h of H/D exchange, and (D) ¹H-¹⁵N HSQC spectrum of GLIC_{ECD} after 6d 20h of H/D exchange

Figure S5. Ab initio normal mode analysis of GLIC ECD₅₋₁₉₃ (PDB: 3EAM, chain A) as a function of sequence through the web interface of *The Elastic Network Model* (http://www.igs.cnrs-mrs.fr/elnemo/)(8). The *ElNémo* server considers the first 6 modes to represent the translational and rotational motions of the system and calculates the next 5 modes. These modes are presented here, and numbered from 1 to 5. Unassigned regions of GLIC_{ECD} are also shown for comparison. Assigned residues are indicated with "0", unassigned ones are indicated with "1". An ECD of the pentameric structure of full-length GLIC (3EAM) was chosen instead of a chain of the hexameric GLIC_{ECD} structure (3IGQ), since the subunits of the latter contain undefined residues.

REFERENCES

- Nury, H.; Bocquet, N.; Le Poupon, C.; Raynal, B.; Haouz, A.; Corringer, P. J.; Delarue, M. J. Mol. Biol. 2010, 395, 1114-1127.
- 2. Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. *Biochemistry* **1994**, *33*, 5984–6003.
- 3. Grzesiek, S. and Bax, A. J. Am. Chem. Soc. 1993, 115, 12593-12594.
- 4. Keller, R. 2004, Cantina Verlag, CH-6410 Goldau.
- 5. Bartels, C.; Xia, T.-H.; Billeter, M.; Güntert, P.; Wüthrich, K. J. Biomol. NMR 1995, 5, 1-10.
- 6. L.Whitmore, and B.A Wallace, Nucleic Acids Research 2004, 32:W668-673
- 7. Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. J. Appl. Crystallogr. 1993, 26, 283–291.
- 8. V Alexandrov, U Lehnert, N Echols, D Milburn, D Engelman, M Gerstein *Protein Sci* 2005, *14*, 633-643. (http://molmovdb.mbb.yale.edu/molmovdb/nma/)