Controlled Size Silver Nanoparticles Synthesis with Water-in-Oil Microemulsion Method: A Topical Review

Jignasa N. Solanki, Zagabathuni Venkata Panchakshari Murthy*

Department of Chemical Engineering Sardar Vallabhbhai National Institute of Technology, Surat Surat - 395 007, Gujarat, India

Table 1. Various control parameters, characterization tools used and particles size obtained for SNPs (silver nanoparticles) synthesis with microemulsion technique.

Surfactant+ Co-surfactant	Ag precursor	Reducing agent	Continuous Organic Phase	Control parameters studied	ω	Charac- terization	Particle size /avg. dia, nm	Remarks	Ref
АОТ	AgNO ₃	NaBH ₄	Diethyl ether			FT-IR, TEM, XPS,UV, TGA-DTA,EA		Capped by dodacanethiol	22
CTAB, Dh	AgNO ₃ HAuCl ₄	NaBH₄ and quercetin	n-hexanol		12.1	UV NMR	5-6 nm	Single microemulsion scheme is used. Ultrasonication gave more uniform particles. Transferred to aqueous phase.	28
C ₁₂ E ₅	AgNO ₃	NaBH4	Cyclohexane	ω	1.13 2.26 4.5 9 18 36	UV EM	$\begin{array}{c} 3.3 \ (\omega=1.12) \\ 4.4 \ (\omega=2.25) \\ 8.8 \ (\omega=4.5) \\ 8.8 \ (\omega=9) \\ 6.6 \ (\omega=18) \\ 4.4 \ (\omega=36) \end{array}$	Most uniform particles at ω = 36 i.e. rw=0.8 (8.8 nm).	29
Ag(AOT) Na(AOT)	AgNO3 Ag(AOT)	$\begin{array}{l} NaBH_4 \\ N_2H_4 \end{array}$	Cyclohexane (Ch) Isooctane (Io)	ω, type of RA., type of oil	2 5 7.5 12.5	SAXS, UV TEM, HRTEM, ED	Ch: 2.5 (ω =5) 5.5 (ω =7.5) 7 (ω =15) Io: 2.7 (ω =5) 3 (ω =7.5) 7 (ω =15)	Smaller particles were favored at low ω . Replacing isooctane by cyclohexane induced a decrease in the intermicellar exchange rate constant.	30
Ag(AOT) Na(AOT)	AgNO ₃ Ag(AOT)	Na(AOT)/ N ₂ H ₄	Isooctane	ω			2 to 7 nm, on increasing water droplet size	Addition of dodecane thiol and extracted from reverse micelles by SSP method reduced the size.	31
AOT	AgNO ₃	NaBH ₄		ω Cm, C _R type of oil, Cs		HRTEM ED, XRD, UV	aropiet size	With increase in AOT concentration, number of SNPs increased, but no significant change in particle size.	32
$\begin{array}{c} AOT \\ C_{12}E_4 \end{array}$	AgNO ₃	NaBH ₄	Isooctane	ω pco2				SNPs recovered by dissolving antisolvent CO_2 and precipitated at suitable pressures. Smaller particles were favored at low ω and high p_{CO2} in recovery process.	33

lgepal CO-520	AgNO ₃	$N_2H_4{\cdot}H_2O$	Cyclohexane	ω		TEM	5 (ω=4)	The average size	34
						ED XRD	10 (ω=6) 10.5 (ω=8)	and distribution of the synthesized Ag particles increased slightly from 4 to 8 with increased ω .	
AOT	AgNO ₃	N_2H_4 · H_2O	Dodecane	ω Cm, C _R	3, 5	UV TEM	2-5 nm	Size increased with ω .	35
АОТ	AgNO ₃	N ₂ H ₄ ·H ₂ O	Dodecane	ω Cm, (study)		TEM FT-IR UV	ω: 1.52(ω=2.5) 3.39(ω=7.5) 4.98(ω=15) Cm: 3.93 (0.1 M) 2.6 (0.2 M)	TEM study showed that size increased with increase in $\boldsymbol{\omega}.$	36
SDS + isoamylalcohol	AgNO ₃	$N_2H_4\cdot H_2O$	Cyclohexane	ωCm	ω,t [M]	UV TEM	$6.5 (\omega=5)^{\prime}$ 9.4($\omega=10$) 12.1($\omega=20$)	Monodisperse particles obtained at low ω . UV study carried over only for Cm variation.	37
TritonX-100	AgNO ₃	NaBH ₄	Cyclohexane	ω Cm (0.05, 0.1 M)	1,3, 5,7	DLS TEM		No effect of Cm on size or λ_{max} for Ag; whereas for bimetallic and gold particles, drastic increase in size as well as λ_{max} was observed.	38
ΑΟΤ	AgNO ₃	$\begin{array}{c} N_2H_4{\cdot}H_2O\\ NaBH_4 \end{array}$	Cyclohexane	ω Cm		UV		Smaller SNPs obtained on increasing the Cm and on decreasing the ω value.	39
ΑΟΤ	AgNO ₃	N_2H_4 · H_2O	Dodecane	Cs	-		3.9 nm (C _s =0.2 M) 1.6 nm (C _s =0.4 M)	Smaller SNPs obtained on increasing the Cm.	40
AOT SDS DTAB NP-5	AgNO ₃	NaBH4	Cyclohexane heptane decane	type of oil, Additional surfactant		UV TEM		With increased chain length of the oil, intermicellar exchange rate coefficient increased leading to decreased particle size. Particle size decreased considerably on addition of a nonionic surfactant (NP-5), but no change was observed with DTAB and SDS.	41
АОТ	Cd(NO ₃) ₂	Na ₂ S	Isooctane			UV		Used a combined approach of spectroscopy and Monte Carlo simulation and found it to be helpful in elucidating the mechanism of formation	42
ΑΟΤ	AgNO ₃	NaBH ₄	Cyclohexane	ω,type of oil, Addition of cations		TEM		Intermicellar exchange rate varied by type of oil, ω and by addition of benzyl alcohol and cations. Particle size, the polydispersity, and the number of particles formed were dependent on the intermicellar exchange rate and/or the rigidity of the surfactant shell.	43
ΑΟΤ	AgNO ₃	NaBH₄	Isooctane					Simulation is only performed on experimental work taken from literature. Autocatalysis and ripening, favor the slow growth of the biggest nanoparticles leading to the production of larger particles when the	44
AOT	-	-	-	-	-	-	-	reaction is slower. Effects of additives (<i>e.g.</i> alcohols) on the exchange kinetics is studied	45
C ₁₂ E ₄ /Brij 30 AOT	AgNO ₃	$C_{12}E_4$	Cyclohexane heptane	Cm		UV TEM		Surfactants act both as reducing agent and structure-directing agent.	46
CTAB, SDOSS, AOT	AgNO ₃	NaBH ₄ And quercetin	decane Isooctane Chloroform	ω, type of RA.	3.62 -7.5		5-15 nm size various RA and solvent combination	Cm variation did not affect droplet's size and shape noticeably. Vietnamese chitosan used as stabilizer. Inhibition in 30 min exposure time was as follows: E.coli of 3 ppm, TPC and fungi of 15 ppm, Vibrio Cholerae cells of 0.5 ppm.	47
АОТ	AgNO ₃	Quercetine	Octane Heptane	t, R	1-10	UV, Surface	1-1.5 nm	No change was observed in size with time or reducing agent concentration.	48

SFAE	AgNO ₃	N ₂ H ₅ OH	Isooctane			plasmon spectra TEM		The resultant silver colloid could be preserved for at least 1	49
NP-5, NP-9, NP- 1+pentanol	AgNO ₃	NaBH ₄	Cyclohexane	Type of surf.	35	UV TEM	18.6 (NP-5) 6.25 (NP-9) 15.2 (NP-II)	month without precipitation. NP-5 and NP-11 gave larger SNPs than NP-9 due to their lamellae like Structure.	50
AOT	AgNO ₃	N_2H_4	Cyclohexane		4-10 25- 30	UV TEM, SANS	Spherical cylindrical	Size and shape were found to be composition dependent.	51
Rhamnolipid	AgNO ₃	NaBH ₄	n- heptane	t		UV TEM, AFM	2-8 nm (TEM) 6-11 nm (AFM)	Green biosurfactant, small aggregation, Spherical, Intrinsic enlarging effect of pin point in AFM.	52
18-3(OH)-18 (gemini surfactant)	AgNO3	NaBH ₄	n- heptane	-	-	TEM, AFM UV–vis XRD XPS	silica-coated SNPs	Visible luminescence at 448 nm.	53
Ag(AOT) Na(AOT	AgNO ₃ Ag(AOT)	N_2H_4	Isooctane	-	40	UV TEM SAXS	3.4 3.5 (after extraction) 4.1 (after SPP)	More smaller and less polydispersity after extraction and fractionation.	54
AOT	AgNO ₃	NaH ₂ PO ₂	Isooctane	-	6	UV, Flourescens, STM	2D- 3.2 nm nanodiscs, 3D-1.5 nm nanostructures	Cluster formation 1 st stage– 2D 2 nd stage–3D	56
SDS + isoamylalcohol	AgNO ₃	N_2H_4 · H_2O	Cyclohexane		5	TEM	6.5	Flake-like powders on centrifugation (self assembled).	57
Igepal CO-520	AgNO ₃ - Pd(NO ₃) ₂	NH4OH	Cyclohexane isooctane			TEM-EDS		On increasing ω , the Ag–Pd particles distribution of the core- shell composite particles was influenced and the distribution of Ag–Pd particles was broadened. On increase in AgNO ₃ solution, sizes of both the types of nanoparticles linearly increased	58
AOT+ SDS	AgNO ₃	NaH ₂ PO ₂	Toluene			XRD AAS HRTEM		Yields obtained were much higher than typical yields.	59
AOT+ SDS	AgNO ₃	NaBH ₄	Toluene	C _R Dosing time		XRD AAS TEM	3 nm	At higher and medium C_R values, formation of only worm-like structures promoted; but at low values, mixture of Ag nanoparticles (\approx 3 nm) and worm-like structures promoted. Yields obtained were much higher than typical yields.	60
Oleylamine	AgNO3	Ascorbic acid	Toluene			FE-SEM	Silica-coated SNPs		61
1-dodecanethiol	AgNO ₃	NaBH ₄	Toluene	Cm. t _{rea}		TEM, UV XRD FT-IR	$t_{rea} = 24 h:$ 35 (Cm=0.03M) 30(Cm=0.01M) $t_{rea}=6 h:$ 21 Cm=0.03M)	DTAB is used as phase transfer agent. Self assembled to give 0-D quanta-dot arrays. Single microemulsion scheme is used.	62
AOT+ Arlacel-20	AgNO ₃		n- heptane Decane Dodecane	ω	5 10	UV	, ,	G (Growth rate) increases. Slow with Ghept>Gdecane>Gdodecane	63
18-3(OH) AAS: AFM: AOT: C ₁₂ E ₄ /Brij C ₁₂ E _{5:}	Ato Ato Sod 30: Tet	mic absorption mic force mic lium bis-(2-eth raethylene gly	s(octadecyldimeth n spectroscopy	einate	propan	e dibromide (a g	gemini surfactan	;) ;)	

Cm :	metal (Ag) ion concentration
C_R :	concentration of reducing agent
Cs :	surfactant concentration
CTAB:	Cetyltrimethylammonium bromide
Dh:	Dodecyl-heptaethyleneglycol-ether (C ₁₂ H ₂₅ -O-(CH ₂ -CH ₂ -O-) ₆ CH ₂ -CH ₂ -OH)
DLS:	Dynamic light scattering
DTAB:	n-Dodecyl trimethylammonium bromide
EA:	elemental analyses
ED:	Electron diffraction
FT-IR:	Fourier transform infra red spectroscopy
HRTEM:	High-resolution transmission electron microscopy
Igepal CO-520:	Poly (oxyethylene) nonylphenyl ether
N_2H_4 · H_2O :	Hydrazine hydrate
N ₂ H ₅ OH :	Hydrazinium hydroxide
NaBH ₄ :	Sodium borohydrate
p _{CO2} :	Antisolvent CO ₂ pressure
RA:	Reducing agent
SANS:	small-angle neutron scattering
SAXS:	Small-angle X-ray scattering
SDOSS:	Sodium dioctyl sulfosuccinate
SDS:	Sodium dodecyl sulfate
SFAE:	Sucrose fatty acid esters
STM:	Scanning tunneling microscopy
TEM:	Transmission electron microscopy
TEM-EDS:	Transmission Electron Microscopy-Energy- Dispersion Spectrum
TEOS:	Tetraethyl orthosilicate
TPC:	Total aerobic bacteria
UV:	UV-vis absorption spectroscopy
XPS:	X-ray photoelectron spectroscopy
XRD:	X-ray diffraction
ω:	Water to surfactant mole ratio

Ref 63: Shah, D. O.; Bagwe, R. P.; Parmer, B. S. The effect of interfacial viscosity on the kinetics of formation of silver nanoparticles using water-in-oil microemulsions as nanoreactors. *Mat. Res. Soc. Symp. Proc.* 2002, 704 (Nanoparticle Materials), 327.