Supporting Information

Structural Relaxation in the Singlet Excited State of Star-Shaped Oligofluorenes having a Truxene or Isotruxene as a Core

Mamoru Fujitsuka,[†]* Dae Won Cho,^{†,‡} Hsin-Hau Huang,[§] Jye-Shane Yang,[§]* and Tetsuro Majima[†]*

[†] The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan, [‡] Konkuk University-Fraunhofer ISE Next Generation Solar Cell Research Center (KFnSC), Konkuk University, Seoul, 143-701, Korea, and [§]Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617

Details of the calculation of two-photon absorption cross section

Assuming a Gaussian beam profile, the nonlinear absorption coefficient β can be obtained by curve fitting to the observed open-aperture traces (*T*(*z*)) with the following equation:

$$T(z) = 1 - \frac{\beta I_0 (1 - e^{-\alpha_0 t})}{2\sqrt{2}\alpha_0 (1 + ((z - z_c)/z_0)^2)}$$

where α_0 is the linear absorption coefficient, *l* is the sample length, z_c is the position of the focal plane and z_0 is the diffraction length of the incident beam. After obtaining the nonlinear absorption coefficient β , the two-photon absorption cross section $\sigma^{(2)}$ of one solute molecule (in units of 1 GM = 10^{-50} cm⁴·s/photon·molecule) can be determined by using the following relationship:

$$\beta = \frac{\sigma^{(2)} N_A d \times 10^{-3}}{h \nu},$$

where N_A is the Avogadro constant, d is the concentration of the TPA compound in solution, h is the Planck constant, and v is the frequency of the incident laser beam. So as to satisfy the condition of $\alpha_0 l \ll 1$, which allows the pure two-photon absorption $\sigma^{(2)}$ values to be determined using a simulation procedure, the two-photon absorption cross-section value of rhodamine 6G was measured as a reference compound; this control was found to exhibit a $\sigma^{(2)}$ value of 65 GM at 800 nm.

Ultrafast fluorescence profiles of TF3.

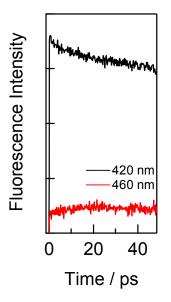
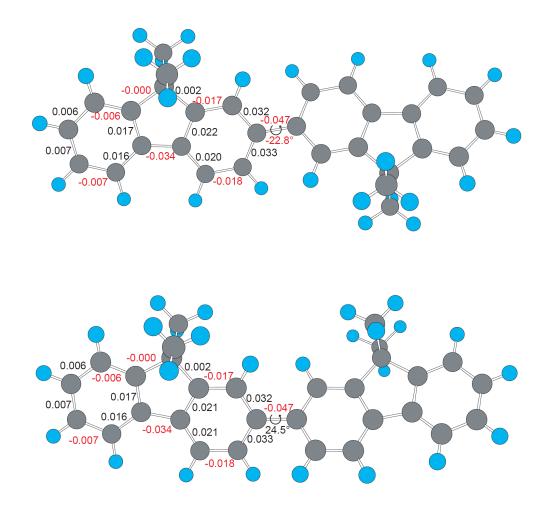
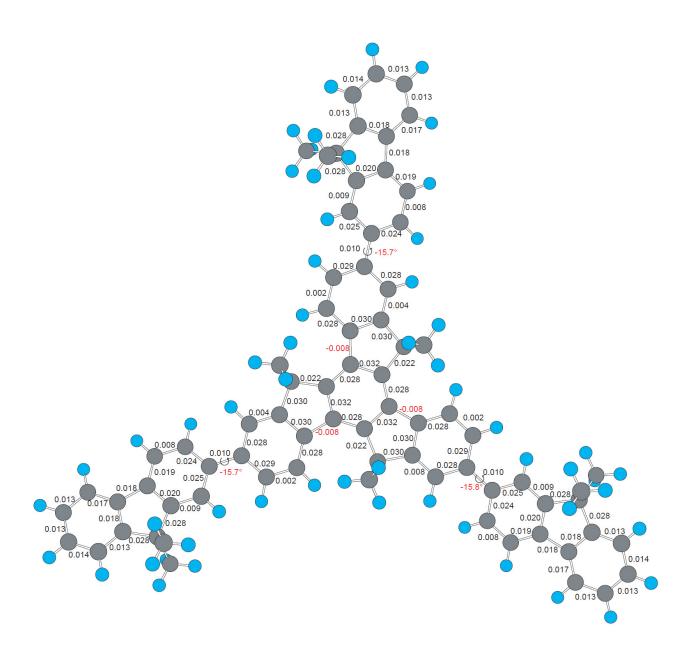
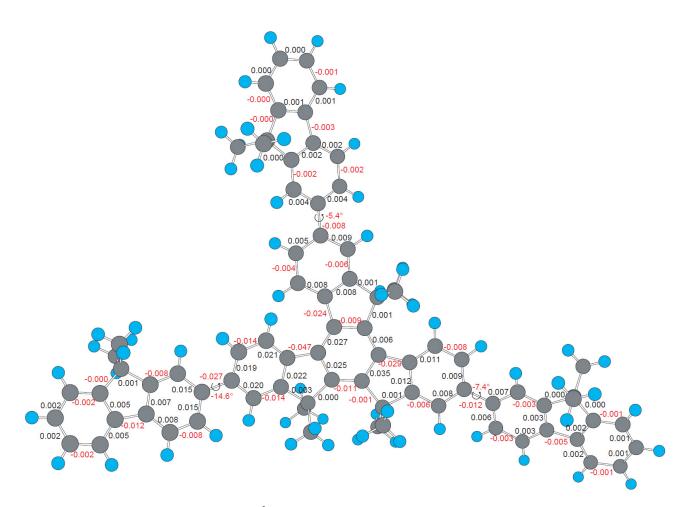




Figure S1. Fluorescence profiles of TF3 in toluene measured at 420 and 460 nm.



Structural change upon excitation to the singlet excited state.

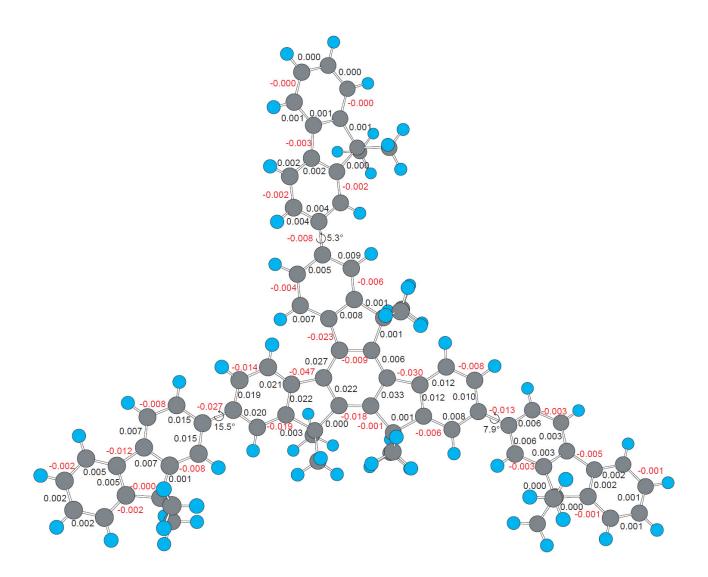

Figure S2. Structural (bond length (Å) and dihedral angle) changes of fluorene dimer upon excitation to the singlet excited state (upper: anti-form, lower: syn-form). The molecular structures in the ground and singlet excited states were calculated at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) levels, respectively. The alkyl groups were reduced to methyl groups.

Figure S3. Structural (bond length (Å) and dihedral angle) changes of TF1 in all anti-form upon excitation to the singlet excited state. The molecular structures in the ground and singlet excited states were calculated at B3LYP/6-31G(d) and TD-B3LYP/STO-3G levels, respectively. The alkyl groups were reduced to methyl groups.

Figure S4. Structural (bond length (Å) and dihedral angle) changes of ITF1 in all anti-form upon excitation to the singlet excited state. The molecular structures in the ground and singlet excited states were calculated at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) levels, respectively. The alkyl groups were reduced to methyl groups.

Figure S5. Structural (bond length (Å) and dihedral angle) changes of ITF1 in all syn-form upon excitation to the singlet excited state. The molecular structures in the ground and singlet excited state were calculated at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) levels, respectively. The alkyl groups were reduced to methyl groups.