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Details of the calculation of two-photon absorption cross section 

Assuming a Gaussian beam profile, the nonlinear absorption coefficient β can be obtained by curve 

fitting to the observed open-aperture traces (T(z)) with the following equation: 
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where α0 is the linear absorption coefficient, l is the sample length, zc is the position of the focal plane 

and z0 is the diffraction length of the incident beam. After obtaining the nonlinear absorption coefficient 
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β, the two-photon absorption cross section σ(2) of one solute molecule (in units of 1 GM = 10-50 

cm4·s/photon·molecule) can be determined by using the following relationship: 
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where NA is the Avogadro constant, d is the concentration of the TPA compound in solution, h is the 

Planck constant, and ν is the frequency of the incident laser beam. So as to satisfy the condition of α0l

≪1, which allows the pure two-photon absorption σ (2) values to be determined using a simulation 

procedure, the two-photon absorption cross-section value of rhodamine 6G was measured as a reference 

compound; this control was found to exhibit a σ (2) value of 65 GM at 800 nm. 

 

Ultrafast fluorescence profiles of TF3. 
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Figure S1. Fluorescence profiles of TF3 in toluene measured at 420 and 460 nm. 
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Structural change upon excitation to the singlet excited state. 

 

 

Figure S2. Structural (bond length (Å) and dihedral angle) changes of fluorene dimer upon excitation to 

the singlet excited state (upper: anti-form, lower: syn-form). The molecular structures in the ground and 

singlet excited states were calculated at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) levels, respectively. 

The alkyl groups were reduced to methyl groups. 
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Figure S3. Structural (bond length (Å) and dihedral angle) changes of TF1 in all anti-form upon 

excitation to the singlet excited state. . The molecular structures in the ground and singlet excited states 

were calculated at B3LYP/6-31G(d) and TD-B3LYP/STO-3G levels, respectively. The alkyl groups 

were reduced to methyl groups. 
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Figure S4. Structural (bond length (Å) and dihedral angle) changes of ITF1 in all anti-form upon 

excitation to the singlet excited state. The molecular structures in the ground and singlet excited states 

were calculated at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) levels, respectively. The alkyl groups 

were reduced to methyl groups. 
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Figure S5. Structural (bond length (Å) and dihedral angle) changes of ITF1 in all syn-form upon 

excitation to the singlet excited state. The molecular structures in the ground and singlet excited state 

were calculated at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) levels, respectively. The alkyl groups 

were reduced to methyl groups. 

 


