Supplementary Material for

Evolution of amide stacking in larger γ-peptides: Triamide H-bonded cycles

William H. James III,^{a,b} Evan G. Buchanan,^a Christian W. Müller,^{a,c} Jacob C. Dean,^a Dmytro Kosenkov,^a Lyudmila V. Slipchenko,^a Li Guo,^{d,e} Andrew G. Reidenbach,^e Samuel H. Gellman,^e and Timothy S. Zwier^a*

- ^a Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084.
- ^b Present address: SCHOTT North America, Inc. 400 York Avenue, Duryea, PA 18642
- ^c Present address: Ruhr University Bochum, Dept. Phys. Chem. 2, D-44780 Bochum, Germany.
- ^d Present address: The Dow Chemical Company, Formulation Science, 1712 Bldg./23-1, Midland, MI 48667
- ^e Department of Chemistry, University of Wisconsin, Madison, WI 53706.

Table of Contents

Tables S1-S3: Relative energies and calculated amide NH stretch frequencies for the assigned conformers of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe and Ac- γ^2 -hAla- γ^2 -hPhe-NHMe at the B3LYP/6-31+G(d), M05-2X/6-311++G(d,p), and M06-2X/6-311++G(d,p) levels of theory.

Figures S1-S7: Experimental RIDIR spectra of the seven observed conformers of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe and Ac- γ^2 -hAla- γ^2 -hPhe-NHMe compared to calculated IR spectra at the a) B3LYP/6-31+G(d) (scaled 0.96), b) M05-2X/6-311++G(d,p) (scaled 0.9417), c) M06-2X/6-311++G(d,p) (scaled 0.9489), and d) ω B97X-D/6-311++G(d,p) (scaled 0.9466) levels of theory.

Figure S8: Depiction of the lowest frequency vibrational mode of the C9/C9(*a*) structure of conformer A of Ac- γ^2 -hAla- γ^2 -hPhe-NHMe. The frequency of the mode, ~14 cm⁻¹, is similar to the 9 cm⁻¹ progression observed experimentally.

Fig. S9. Fragmentation of a) Ac- γ^2 -hAla- γ^2 -hPhe-NHMe and b) Ac- γ^2 -hPhe- γ^2 -hAla-NHMe employed in FMO-PIEDA for calculating non-bonded interactions.

Table S4 and S5: Cartesian coordinates for conformer C (C7/C7/C14(g-)) of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe and conformer C (C7/C7/C14(g-)) of Ac- γ^2 -hAla- γ^2 -hPhe-NHMe at the ω B97X-D/6-311++G(d,p) level of theory.

Table S1. Relative energies and calculated amide NH stretch frequencies for the assigned conformers of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe and Ac- γ^2 -hAla- γ^2 -hPhe-NHMe at the B3LYP/6-31+G(d) level of theory.

Conformer	H-bond Family	Structure	ΔE (kJ/mol)	Calc. Amide NH Stretches (cm ⁻¹) ^a			
Ac- γ^2 -hPhe- γ^2 -hAla-NHMe							
А	C9/C9	C9/C9(a)	0.34	3337 3349 3475			
В	C9/C9	C9/C9(g-)	0.00	3329 3341 3476			
С	C7/C7/C14	C7/C7/C14(g-)	14.06	3414 3426 3442			
D	C9/C9	C9/C9(g+)	22.84	3331 3343 3486			
$Ac-\gamma^2-hAla-\gamma^2-hPhe-NHMe$							
А	C9/C9	C9/C9(a)	0.00	3331 3339 3474			
В	C9/C14	C9/C14(a)	4.71	3386 3429 3470			
С	C7/C7/C14	C7/C7/C14(g-)	12.07	3373 3429 3438			

^aScaled 0.96 B3LYP/6-31+G(d)

Table S2. Relative energies, relative free energies, single-point TDDFT excitation energies, and calculated amide NH stretch frequencies for the assigned conformers of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe and Ac- γ^2 -hAla- γ^2 -hPhe-NHMe at the M05-2X/6-311++G(d,p) level of theory.

Conformer	H-bond Family	Structure	ΔE (kJ/mol)	ΔG ⁴⁹³ (kJ/mol)	$TDDFT S_0-S_1 (cm^{-1})^a$	Calc. Amide NH Stretches (cm ⁻¹) ^b
		Ac-γ ² -hP	he-γ ² -hAla-NH	IMe		
А	C9/C9	C9/C9(a)	0.83	0.09	37535	3351 3360 3486
В	C9/C9	C9/C9(g-)	0.00	0.00	37422	3330 3353 3483
С	C7/C7/C14	C7/C7/C14(g-)	2.91	1.58	37436	3390 3422 3432
D	C9/C9	C9/C9(g+)	11.65	2.35	37235	3345 3354 3499
Ac- γ^2 -hAla- γ^2 -hPhe-NHMe						
А	C9/C9	C9/C9(a)	0.00	0.00	38068	3343 3352 3486
В	C9/C14	C9/C14(a)	7.85	1.31	37473	3406 3423 3479
С	C7/C7/C14	C7/C7/C14(g-)	0.90	10.17	37367	3378 3422 3429

^aScaled 0.8337 for Ac- γ^2 -hPhe- γ^2 -hAla-NHMe and Ac- γ^2 -hAla- γ^2 -hPhe-NHMe single point TDDFT M05-2X/6-311++G(d,p) ^bScaled 0.9417 M05-2X/6-311++G(d,p) Table S3. Relative energies, relative free energies, single-point TDDFT excitation energies, and calculated amide NH stretch frequencies for the assigned conformers of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe and Ac- γ^2 -hAla- γ^2 -hPhe-NHMe at the M06-2X/6-311++G(d,p) level of theory.

Conformer	H-bond Family	Structure	ΔE (kJ/mol)	ΔG^{493} (kJ/mol)	$\begin{array}{c} TDDFT\\ S_0\text{-}S_1\\ (\text{cm}^{-1})^a \end{array}$	Calc. Amide NH Stretches (cm ⁻¹) ^b
$\Delta c_{\rm ev}^2$ h Phe $v_{\rm e}^2$ h $\Delta l_{\rm e}$ NHMe						
А	C9/C9	C9/C9(a)	3.82	0.63	37535	3353 3361 3485
В	C9/C9	C9/C9(g-)	3.11	0.00	37434	3334 3357 3482
С	C7/C7/C14	C7/C7/C14(g-)	2.63	1.88	37452	3391 3428 3432
D	C9/C9	C9/C9(g+)	9.99	2.23	37233	3351 3360 3499
Ac- γ^2 -hAla- γ^2 -hPhe-NHMe						
А	C9/C9	C9/C9(a)	2.45	0.00	37406	3344 3355 3484
В	C9/C14	C9/C14(a)	9.76	1.92	37485	3408 3420 3477
С	C7/C7/C14	C7/C7/C14(g-)	0.00	5.53	37365	3378 3425 3435

^aScaled 0.8491 for Ac- γ^2 -hPhe- γ^2 -hAla-NHMe and Ac- γ^2 -hAla- γ^2 -hPhe-NHMe single point TDDFT M06-2X/6-311++G(d,p) ^bScaled 0.9489 M06-2X/6-311++G(d,p)

Figure S1: Experimental RIDIR spectrum of conformer A of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe (black trace) and calculated IR spectra at the a) B3LYP/6-31+G(d) (scaled 0.96), b) M05-2X/6-311++G(d,p) (scaled 0.9417), c) M06-2X/6-311++G(d,p) (scaled 0.9489), and d) ω B97X-D/6-311++G(d,p) (scaled 0.9466) levels of theory.

Figure S2: Experimental RIDIR spectrum of conformer B of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe (black trace) and calculated IR spectra at the a) B3LYP/6-31+G(d) (scaled 0.96), b) M05-2X/6-311++G(d,p) (scaled 0.9417), c) M06-2X/6-311++G(d,p) (scaled 0.9489), and d) ω B97X-D/6-311++G(d,p) (scaled 0.9466) levels of theory.

Figure S3: Experimental RIDIR spectrum of conformer C of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe (black trace) and calculated IR spectra at the a) B3LYP/6-31+G(d) (scaled 0.96), b) M05-2X/6-311++G(d,p) (scaled 0.9417), c) M06-2X/6-311++G(d,p) (scaled 0.9489), and d) ω B97X-D/6-311++G(d,p) (scaled 0.9466) levels of theory.

Figure S4: Experimental RIDIR spectrum of conformer D of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe (black trace) and calculated IR spectra at the a) B3LYP/6-31+G(d) (scaled 0.96), b) M05-2X/6-311++G(d,p) (scaled 0.9417), c) M06-2X/6-311++G(d,p) (scaled 0.9489), and d) ω B97X-D/6-311++G(d,p) (scaled 0.9466) levels of theory.

Figure S5: Experimental RIDIR spectrum of conformer A of Ac- γ^2 -hAla- γ^2 -hPhe-NHMe (black trace) and calculated IR spectra at the a) B3LYP/6-31+G(d) (scaled 0.96), b) M05-2X/6-311++G(d,p) (scaled 0.9417), c) M06-2X/6-311++G(d,p) (scaled 0.9489), and d) ω B97X-D/6-311++G(d,p) (scaled 0.9466) levels of theory.

Figure S6: Experimental RIDIR spectrum of conformer B of Ac- γ^2 -hAla- γ^2 -hPhe-NHMe (black trace) and calculated IR spectra at the a) B3LYP/6-31+G(d) (scaled 0.96), b) M05-2X/6-311++G(d,p) (scaled 0.9417), c) M06-2X/6-311++G(d,p) (scaled 0.9489), and d) ω B97X-D/6-311++G(d,p) (scaled 0.9466) levels of theory.

Figure S7: Experimental RIDIR spectrum of conformer C of Ac- γ^2 -hAla- γ^2 -hPhe-NHMe (black trace) and calculated IR spectra at the a) B3LYP/6-31+G(d) (scaled 0.96), b) M05-2X/6-311++G(d,p) (scaled 0.9417), c) M06-2X/6-311++G(d,p) (scaled 0.9489), and d) ω B97X-D/6-311++G(d,p) (scaled 0.9466) levels of theory.

Figure S8: Lowest vibrational mode of the C9/C9(*a*) structure of conformer A of Ac- γ^2 -hAla- γ^2 -hPhe-NHMe. The frequency of the mode, ~14 cm⁻¹, is similar to the 9 cm⁻¹ progression observed experimentally.

Fig. S9. Fragmentation of a) Ac- γ^2 -hAla- γ^2 -hPhe-NHMe and b) Ac- γ^2 -hPhe- γ^2 -hAla-NHMe employed in FMO-PIEDA for calculating non-bonded interactions.

Figure S10: Orbitals calculated to interact using Natural Bond Orbital analysis for the amide stacked conformer of Ac- γ^2 -hPhe-NHMe.

Table S4. Cartesian coordinates for conformer C (C7/C7/C14(g-)) of Ac- γ^2 -hPhe- γ^2 -hAla-NHMe at the ω B97X-D/6-311++G(d,p) level of theory.

Atom	Х	У	Z
С	-3.397633	2.804709	-0.159669
С	-2.328865	2.137389	-0.996233
Ν	-1.07044	2.258021	-0.535797
С	0.094141	1.736991	-1.235318
С	1.281386	1.53347	-0.296808
С	1.197145	0.305623	0.614639
С	-0.003806	0.373415	1.551864
N	-0.655308	-0.793795	1.724896
С	-1.939894	-0.872127	2.39784
Č	-3.102481	-0.504988	1.471265
Č	-3.470015	-1.546047	0.396695
Č	-2.260681	-1.98039	-0.430913
N	-1.988217	-1.296023	-1.556588
C	-0.866524	-1 664532	-2 394289
Õ	-2.605173	1.547065	-2.039121
0	-0 327699	1 413962	2 116847
0	-1 553602	-2 917655	-0.06204
C	2 475342	0 139443	1 466925
C	5 942251	-0.550006	-0.999434
C	4 993808	-1 552244	-0.999+34
C	3 886524	-1.332244	-0.021702
C	3 704807	-0.101226	0.627403
C	1 663242	0.803527	0.027403
C	4.003242 5.774805	0.673105	-0.362607
C	J.77480J 4 648778	1.054243	-0.302007
с u	-4.040770	-1.034243	-0.443931
п u	5 120208	-0.724327	-1.027558
п п	2 152420	2.117147	-1.30912
п u	3.133439 1 52717	-2.11/14/	0.124192
п u	6 511200	1.651/11	0.938922
п u	0.311209	0.441092	-0.491803
п	-2.403327	-0.441088	-1.764126
п	-0.404444	-1.367040	0.409942
п	-0.92890	2.386934	0.408884
п	-3.080277	2.960147	0.809007
п	-3.048097	5.701927 2.195795	-0.023943
п	-4.294840	2.163763	-0.104008
н	-0.1/9809	0./98//1	-1./21158
п	0.57504	2.434773	-2.050994
н	2.177015	1.430998	-0.914089
н	1.42/0/3	2.428/38	0.31828
н	-2.050797	-1.887/01	2.782771
H	-1.91593	-0.183474	3.243157
н	-3.995050	-0.33/3//	2.083843
H	-2.86/36/	0.45158	0.997225
H	-0.842834	-0.993355	-3.252643
H	0.082884	-1.591499	-1.853916
H	-0.968686	-2.694399	-2.742535
H	2.602595	1.03487	2.082294
H	2.331184	-0./01158	2.153016
H	-4.931594	-1./90584	-1.201667
H	-5.516603	-0.877943	0.195363
H	-4.422558	-0.115414	-0.960265
H 	-3.763935	-2.464015	0.915283
Н	1.094341	-0.584826	-0.017298

Table S5. Cartesian coordinates for conformer C (C7/C7/C14(g-)) of Ac- γ^2 -hAla- γ^2 -hPhe-NHMe at the ω B97X-D/6-311++G(d,p) level of theory.

Atom	Х	У	Z
С	-0.493307	2.776392	0.15109
С	0.590885	2.130444	0.983797
Ν	1.848927	2.351612	0.553801
С	3.029036	1.774458	1.171905
Ċ	3.391142	0.37076	0.678781
C	3.71046	0.224372	-0.821306
Ĉ	2 459789	0.495032	-1 656844
N	1 564288	-0 510196	-1 721227
C	0 225914	-0.336662	-2 258079
C	-0 773976	-0.350002	-1.578119
C	0.826570	1 13/151	0.055132
C	0.304432	-1.134131	0.636823
N	0.504452	-1.094739	1 868405
C	1 611007	2 113444	2 681212
	0.227480	-2.113444	2.061212
0	0.327469	1.463091	1.997041
0	2.23094	1.390774	-2.1/2043
C	4 222474	-2.870701	1.004412
C	4.552474	-1.146//	-1.094412
C	-2.1/3483	-1.644/06	0.513646
C	-5.354098	1.131018	-0.351961
C	-5.27482	-0.068243	-1.04/823
C	-4.258262	-0.974964	-0.763045
C	-3.308211	-0.697282	0.217032
C	-3.401038	0.509638	0.91418
C	-4.413566	1.417021	0.633211
H	5.30722	-1.218/56	-0.605274
Н	0.32852	-0.50465	2.126983
H	1.78529	-1.407468	-1.312218
Н	1.960919	2.702257	-0.38/62/
H	-0.146529	3.062594	-0.843338
Н	-1.341413	2.09703	0.060712
Н	-0.841833	3.670407	0.674482
H	3.860335	2.461279	0.988794
H	2.855462	1.740287	2.248937
H	4.270275	0.043976	1.245514
H	2.578975	-0.312351	0.93576
H	-0.054788	0.708526	-2.103122
H	0.220945	-0.509436	-3.339511
H	-1.759341	-1.03479	-1.9914
Н	-0.555269	-2.309732	-1.827792
H	2.568387	-2.201821	2.156631
Н	1.75744	-1.538784	3.595608
Н	1.28046	-3.121262	2.940536
Н	3.715077	-1.962014	-0.698308
Н	4.477334	-1.318306	-2.163796
Н	-2.381749	-2.636203	0.099869
Н	-2.079715	-1.762371	1.596685
Н	-0.73483	-0.081207	0.226337
Н	4.419643	1.003526	-1.116294
Н	-6.146337	1.83788	-0.571323
Н	-6.006169	-0.30168	-1.813752
Н	-4.204138	-1.912483	-1.308058
Н	-2.66726	0.73877	1.682701
Н	-4.472065	2.347804	1.186873