SUPPORTING INFORMATION

Determination of the Specific Surface Area of Snow Using Ozonation of 1,1-Diphenylethylene

Debajyoti Ray,¹ Romana Kurková,¹ Ivana Hovorková,¹ Petr Klán*^{1,2}

 ¹ Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic.
² Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 62500 Brno, Czech Republic. Phone: +420-549494856; Fax: +420-549492443; E-mail: klan@sci.muni.cz

Table of Contents

Experimental	S 1
Ozonation of snow samples of different thickness	S2
Figure S1: The relative concentrations of DPE and BP during ozonation	S2
Figure S2: Determination of the observed rate constants	S3
Determination of the specific surface area	S3
Figure S3 : The plot of $\ln(c_{DPE}/c_{DPE}^0)$ vs. time	S4
References	S4

Experimental

Materials. Reagents and solvents (1,1-diphenylethylene, **DPE**; benzophenone, **BP**; potassium iodide; potassium iodate; anhydrous sodium sulfate; dichloromethane) of the highest purity available were used as purchased. Water was purified on an Osmonics 2 and a Millipore Simplicity 185.

Instrumentation. A GC-MS system consisting of a HP 6890 gas chromatograph (Agilent), equipped with a J&W Scientific DB-5MS fused silica column (60 m × 0.25 mm; 0.25 μ m stationary-phase film; 5% phenyl/95% methyl-polysiloxane) and a HP 5973 mass selective detector (Agilent), was used; the carrier gas was helium (flow: 1.5 mL min⁻¹). Injector and transfer line temperature was 280 °C. Samples (1 μ L) were injected in a split mode (1:20) for a full-scan analysis or in a split-less mode (SIM). Initial temperature was 80 °C, held for 1 min, the temperature was raised to 180 °C by 10 min⁻¹, then to 300°C by 15 min⁻¹; the final temperature was held for 5 min.

Sample Analyses. The snow samples (50 g) were melted at 20 °C and extracted with dichloromethane (3×15 mL). The extracts were concentrated under a stream of nitrogen to 10 mL, dried with anhydrous sodium sulfate (~5 g), filtered through glass wool, concentrated to 1 mL under a gentle stream of nitrogen gas, and analyzed directly using GC-MS (Supporting Information). All measurements were based on at least 3 independent experiments, and the relative standard deviation of the mean is given.

Iodometry. Ozone was produced using a homemade variable ozone generator. Its concentration inside the desiccator was determined iodometrically using a UV-Vis spectrometry.^{1, 2} O₃ in the O₃/O₂ stream was passed through a buffered solution of KI. The molar concentrations of triiodide ion formed were determined from the absorbance vs. concentration calibration curve; the number of moles of I_3^- is equivalent to that of ozone. The values were corrected for KI oxidation by molecular oxygen (when the ozonator lamp is off). The O₃ concentrations were in the range of $0-1.6 \times 10^{16}$ molecules cm⁻³ and were controlled by changing the flow rate of O₂ gas as well as by the irradiation flux in the ozone generator.

Figure S1: The relative concentrations of **DPE** (**•**) and **BP** (**•**) during ozonation of the **DPE** snow samples, when layers of the samples of different thickness were exposed to the same O₃ concentration for the same time (10 min); $c^0_{\text{DPE}} = 4.7 \times 10^{-6}$ mol kg⁻¹ (sub-monolayer concentration; see the main text); $c_{O_3} = 10^{16}$ molecules cm⁻³; T = -15 °C; error bars represent the standard deviation.

Figure S2: Determination of the observed rate constants k_{obs} by plotting $\ln(c_{DPE}/c^0_{DPE})$ vs. reaction time using the least-squares method for different initial snow surface concentrations (c^0_{DPE}) ; c_{DPE} are the **DPE** sample concentrations in the course of ozonation. Average values for the given c^0_{DPE} are shown; error bars represent the standard deviation.

Determination of the Specific Surface Area. The specific surface area (SSA) was determined similarly to the method described in our previous works^{3, 4} using Equation S1:

$$SSA = c^{L}_{DPE} \times N_{A} \times A_{DPE}$$
 Eq. S1

where c^{L}_{DPE} is the concentration (mol kg⁻¹; see the main text) related to the monolayer coverage, N_A is the Avogadro number, and A_{DPE} is the molecular area of **DPE** calculated from the structure optimized with a DFT method⁴ (~6 × 10⁻¹⁹ m²). A_{DPE} was estimated from the molecule volume considering the van der Waals parameters and making the projection onto the surface parallel the molecular plane. Using the concentration $c^{L}_{DPE} = 2 \times 10^{-5}$ mol kg⁻¹, the calculated SSA value is 72 cm² g⁻¹. This method considers the molecules lying flat on the ice surface.

Figure S3: An example of the plot of $\ln(c_{\text{DPE}}/c^0_{\text{DPE}})$ vs. time for the initial concentration $c^0_{\text{DPE}} = 3.6 \times 10^{-7}$ mol kg⁻¹. A longer exposure to ozone was set to obtain high reaction conversions and to show a possible slower kinetic component (see the main text).

References

1. Birdsall, C. M.; Jenkins, A. C.; Spadinger, E., Iodometric determination of ozone. *Anal. Chem.* **1952**, *24*, 662-664.

2. Flamm, D. L., Analysis of ozone at low concentration with boric acid buffered KI. *Environ. Sci. Technol.* **1977**, *11*, 978-983.

3. Heger, D.; Nachtigallova, D.; Surman, F.; Krausko, J.; Magyarova, B.; Brumovsky, M.; Rubes, M.; Gladich, I.; Klan, P., Self-Organization of 1-Methylnaphthalene on the Surface of Artificial Snow Grains: A Combined Experimental-Computational Approach. *J. Phys. Chem. A* **2011**, *115*, 11412-11422.

4. Kurkova, R.; Ray, D.; Nachtigallova, D.; Klan, P., Chemistry of small organic molecules on snow grains: The applicability of artificial snow for environmental studies. *Environ. Sci. Technol.* **2011**, *45*, 3430-3436.