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Derivatives

Many techniques for solving Eq. (M5) require the derivative

r ′ ≡ dr
dc

= kc + kq
d f
dc

. (1)

Since d f/dc ≥ 0, it follows r ′ > 0. Thus if a trial solution c+ has a residual r+ > 0, then c+ is

more positive than cs. Conversely, r+ < 0 means c+ is too negative.

Given the cs that sets r = 0, Eq. (M4) gives w = kc(cb− cs). In addition to w, the transport

solver may require the partial derivatives

∂w
∂cb

= kc

(
1− ∂cs

∂cb

)
and

∂w
∂qb

=−kc
∂cs

∂qb
. (2)

Differentiating Eq. (M5) implicitly (i.e., holding r = 0) gives

∂cs

∂cb
=

kc

r ′
and

∂cs

∂qb
=

kq

r ′
. (3)

These results hold for any isotherm f used in the linear driving force model.

Regula falsi (rf)

The regula falsi, or false position, method places c+ where the chord connecting the bracket’s

bounding points crosses r = 0 (1):

c+ = c`−
r`(cr− c`)

rr− r`
. (4)

Regula falsi converges from the right on this problem. The Polanyi-DR isotherm makes d2r/dc2 <

0, which ensures that the chord connecting the bounds lies beneath the residual curve, and hence

crosses r = 0 to the right of the solution.

To combat this one-sided convergence, variation rfa applies Aitken’s delta-squared method (1).
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Suppose regula falsi produces a sequence cn, cn+1, cn+2 of estimated solutions. Aitken, assuming

the errors follow a geometric sequence, replaces cn+2 with

c+ = cn−
(cn+1− cn)

2

cn+2−2cn+1 + cn
. (5)

When converging from the right, a geometric progression should produce a positive denominator;

if not, we set c+ = cn+2. The right-hand bound of the resulting bracket becomes cn for the next

Aitken extrapolation.

Newton–Raphson (nr)

This method starts at a known point on the residual curve, then follows the tangent line to where it

crosses r = 0 (1):

c+ = cy−
ry

r ′y
, (6)

where cy is one of c` or cr, and ry the residual evaluated there.

Newton–Raphson converges from the left on this problem. Suppose cy lies to the left of the

solution. Then ry < 0, and the method follows the tangent toward increasing c. However, since the

slope of the residual curve becomes less positive as c increases, the tangent crosses r = 0 to the

left of the desired solution. Conversely, if cy = cr, the method follows a too-shallow tangent line,

and again places c+ to the left of cs.

Because of this behavior, for simplicity we always take cy = c` in Eq. (6). In addition, varia-

tion nra applies Aitken acceleration. Converging from the left implies a negative denominator in

Eq. (5); otherwise, we take c+ = cn+2.
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Quadratic fit (qf∗)

Fit the quadratic model r̂ = A∆c2 +B∆c+C, where ∆c = c− cy, to points (cy, ry) and (cz, rz), and

to the slope at cy. Then

A =
∆rz

∆c2
z
−

r ′y
∆cz

and B = r ′y and C = ry . (7)

The quadratic formula gives c+− cy = (−B±
√

B2−4AC)/(2A). Let cy and cz be the bracket

points, in any order. Then A < 0 and B2−4AC > 0. Furthermore, adding the square root gives the

smaller-magnitude root of r̂ = 0, placing c+ in the bracket. However, finite-precision effects make

this formulation unstable. Therefore we first find the larger-magnitude root, then use the fact that

the product of the two roots is C/A. This gives

c+ = cy−
2ry∆cz

B∆cz + sign{∆cz}
√

(B∆cz)2−4(ry∆cz)(A∆cz)
. (8)

We tested several variations on this method: qfl always picks cy = c`; qfr uses cy = cr; qfs

uses the bound with the smaller residual magnitude; and qfu takes cy as the bound that was most

recently updated.

Inverse quadratic (iq∗)

This family of methods models c as a quadratic function of r, then takes c+ as the concentration

where r = 0.

Method iq3 fits to the left and right bounds, and to the most recently replaced bound, cp, giving

c+ =
c`(rprr)(rp− rr)− cr(rpr`)(rp− r`)+ cp(rrr`)(rr− r`)

(rp− rr)(rp− r`)(rr− r`)
. (9)

At the first iteration (i.e., before a cp exists), or if finite-precision effects produce a zero in the

denominator, we make c+ the midpoint from Eq. (M11).
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Method iqs∗ fits to the slope at cy, as well as to bounds cy and cz:

c+ = cy−

[
rz

r ′y
−∆cz

(
ry

∆rz

)](
ry

∆rz

)
, (10)

where ∆rz = rz− ry. Variations iqsl, iqsr, iqss, and iqsu pick cy following the same notation as

used for the quadratic fits. Note that taking cy = cr may place c+ to the left of the bracket, in which

case we apply bisection.

Inverse cubic (icu∗)

Consider a cubic model ĉ = A∆r3 +B∆r2 +C∆r+D, where ∆r = r− r`. Fitting this model to the

points and slopes at c` and cr, then evaluating at r = 0, gives method icub:

c+ = c`−
r`
r ′`
+

(
r`

∆rr

)2(
∆cr

[
3rr− r`

∆rr

]
− 2rr− r`

r ′`
− rr

r ′r

)
. (11)

Interpreting the rightmost term as a correction to Eq. (6), and recalling that Newton–Raphson

converges from the left, we require a positive correction. Otherwise, we take the Newton–Raphson

step.

Nonpositive corrections frequently result from a nonpositive coefficient B in the cubic fit mak-

ing the model ĉ bend to the left of c`. The reduced inverse cubic method, icur, prevents this by

forcing B = 0. Fitting to the two bounds, and to the slope at c`, gives

c+ = c`− r`

(
1−α

r ′`
+α

∆cr

∆rr

)
where α =

(
r`

∆rr

)2

. (12)

The result is a weighted average of the Newton–Raphson and regula falsi steps, favoring the former

as the magnitude of r` falls relative to rr. To avoid slow convergence from the right, we force

α ≤ 0.9.
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Rational function (rat∗)

Model the residuals as a rational function

r̂ = ry +
F1∆c

1+F2∆c
, (13)

where ∆c = c− cy. Fitting to the bracket points, and to the slope at cy, gives F1 = r ′y and

F2 =
r ′y∆cz−∆rz

∆cz∆rz
. (14)

In exact arithmetic, F2 > 0. Setting r̂ = 0 gives

c+ = cy−
ry

r ′y

(
∆cz∆rz

∆cz∆rz + ry∆cz− (ry/r ′y)∆rz

)
, (15)

i.e., a scaled Newton–Raphson step. Variations ratl, ratr, ratu, and rats choose cy following the

same notation as used for the quadratic fits.

Ridder’s method (rid)

Designed to factor out exponential behavior from a residual function, Ridder’s method (1), applied

to Eq. (M5), sets

c+ = cm− (cm− c`)
rm√

r2
m− r`rr

, (16)

where cm is the bracket midpoint of Eq. (M11). Note this method requires two residual evaluations

per iteration.

Precomputed values

For speed, the implementations precompute 1/cmax, then calculate ln{cmax/c}as− ln{c·(1/cmax)}.

This replaces a relatively expensive division with a multiplication, at a slight cost in accuracy (on

average, about one decimal digit of the machine’s precision). Numerical tests show that precom-
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puting ln{cmax}, for use in the alternate expression ln{cmax}− ln{c}, induces average errors slightly

larger (by a factor of about 1.4) than those due to inverting cmax.

Some algorithms also cache values such as 1/r ′`, for re-use when a bound does not change

between iterations. We made these decisions case-by-case, based on numerical testing.

To avoid loss of precision when finding small differences between large numbers, we do not

precompute the constant term kccb + kqqb in Eq. (M5).
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