## **Supporting Information**

## High Resolution Separation of Graphene Oxide by Capillary Electrophoresis

GO sheets normally carry with negative charge (pH > 4) due to the dissociation of carboxylic groups:

$$\operatorname{GOH} \xleftarrow{K_{A}} \operatorname{GO}^{-} + \operatorname{H}^{+}$$
(S1)

and

$$K_{\rm A} = \frac{\left[ {\rm GO}^{-} \right] \left[ {\rm H}^{+} \right]_{\rm local}}{\left[ {\rm GOH} \right]}$$
(S2)

The local concentration and the bulk concentration of proton can be found with the help of the Boltzmann factor (  $k_{\rm B}$  ):

$$\begin{bmatrix} \mathbf{H}^{+} \end{bmatrix}_{\text{local}} = \begin{bmatrix} \mathbf{H}^{+} \end{bmatrix} \cdot e^{-\frac{e\psi_{0}}{k_{\mathrm{B}}T}}$$
(S3)

We have the surface potential of  $\psi_0^{-1}$ 

$$\psi_0 = 2.30 \cdot \frac{RT}{F_A} \cdot \left( pK_A - pH \right) + 2.30 \cdot \frac{RT}{F_A} \log \frac{\left[ \text{GO}^- \right]}{\left[ \text{GOH} \right]}$$
(S4)

The surface charge density ( $\sigma$ ) was obtained according to Grahame equation:

$$\sigma = \frac{4\varepsilon_0 \varepsilon_{\rm R} k_{\rm B} T \kappa}{e} \sinh \frac{e \psi_0}{2k_{\rm B} T} \tag{S5}$$

where  $\varepsilon_0$ ,  $\varepsilon_R$  are dielectric permittivity coefficients of the vacuum and solution system, respectively.  $\kappa$  is the inverse of Debye length ( $\lambda_D$ ) of surface potential

$$\lambda_{\rm D} = \frac{1}{\sqrt{\frac{e^2}{\varepsilon\varepsilon_0 k_{\rm B}T} \sum_i c_i^0 Z_i^2}} = \kappa^{-1}$$
(S6)

When the surface potential was low ( $\psi_0 < 50 \text{ mV}$ ), eq 5 can be simplified as<sup>1</sup>:

$$\sigma = \frac{2\varepsilon\varepsilon_0\psi_0}{\lambda_{\rm D}} \tag{S7}$$

So surface charged GO sheets can be described as a flat slab with two faces using theory of electric double layer.

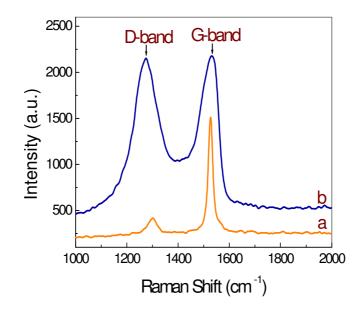
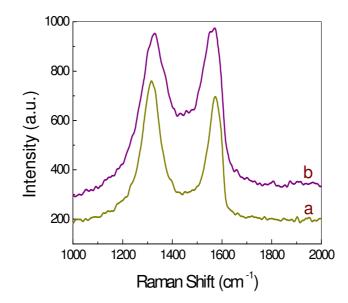
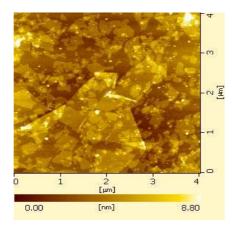





Figure S1. Raman spectra of graphite (a) and graphene oxide (b). These spectra are obtained with  $E_{laser} = 2.41 \text{eV} (514 \text{ nm}).$ 



**Figure S2**. Raman spectra taken at 514nm of GO fractionations obtained at the anode (a) and the cathode (b), respectively.



**Figure S3**. AFM image of the GO sample used for the separation study. The sample is polydisperse with sizes varying from a few nanometers to micrometers.

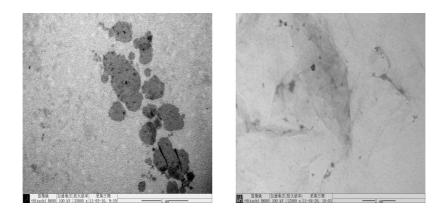



Figure S4. TEM images of the GO sample obtained at the anode (left) and cathode (right), respectively.

## Reference

(1) Butt, H.-J.; Graf, K.; Kappl, M.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2003.