Palladium(II)-Catalyzed C-C Bond Formation of Arylhydrazines with Olefins via Carbon-Nitrogen Bond

Cleavage
Ming-Kui, Zhu, Jun-Feng Zhao and Teck-Peng Loh*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
E-mail: teckpeng@ntu.edu.sg

Supporting Information

Table of Contents Page
General Methods S-1
Screening of the optimal conditions S-2
Procedure for Palladium(II)-Catalyzed C-C bond formation of aniline with S-3 tert-butyl acrylate
General Procedure for Palladium(II)-Catalyzed C-C bond formation of Arylhydrazines with Olefins S-3
Procedure for synthesis of (2,9-dimethyl-1,10-phenanthroline)- 4-cyanophenyl -palladium(II) chloride (1h') S-4
Procedure for Palladium(II)-Catalyzed C-C bond formation of N'-phenyl- acetohydrazide with tert-butyl acrylate: S-4
Characterization Data for the product S-5
Mechanistic study by employing ESI-MS S-14
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and High Resolution Mass (HRMS) spectra S-16

General Methods

Experiments involving moisture and/or air sensitive components were performed in oven-dried glassware under a positive pressure of nitrogen using freshly distilled solvents. Commercial grade solvents and reagents were used without further purification. Hexane, ethyl acetate were fractionally distilled.

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm . Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate.

Flash chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.

Infrared spectra were recorded on a Bio-Rad FTS 165 FTIR spectrometer. The oil samples were examined under neat conditons.

High Resolution Mass (HRMS) spectra were obtained using Waters Q-Tof Permies Mass Spectrometer.

Proton nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR) were recorded on a Bruker Avance DPX 300 and Bruker AMX 400 spectrophotometer $\left(\mathrm{CDCl}_{3}\right.$ as solvent). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta$ $0.0)$ and relative to the signal of chloroform- d ($\delta 7.2600$, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublets of doublet); dddd (doublets of doublets of doublets of doublet); dt (doublets of triplet); or m (multiplets). The number of protons (n) for a given resonance is indicated by nH . Coupling constants are reported as a J value in Hz . Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe_{4} ($\delta 0.0$) and relative to the signal of chloroform- d ($\delta 77.0$, triplet).

Screening of the optimal conditions:

| la (1.0 equiv) | La (2.0 equiv) |
| :---: | :---: | :---: | :---: | :---: | :---: |

[^0]

A

D

B

Procedure for Palladium(II)-Catalyzed C-C bond formation of aniline with tert-butyl acrylate:

A 5 mL round bottomed flask equipped with a magnetic stirring bar was charged with aniline $(0.30 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 0.03 \mathrm{mmol}), 1,10-\mathrm{phenanthroline}$ ($3.6 \mathrm{~mol} \%, 0.036$ mmol $)$, tert-butyl acrylate (0.60 mmol) and 4 equiv of HOAc (1.2 mmol) a in DCE. The flask was stirred at $40{ }^{\circ} \mathrm{C}$ in air (1 atm) for 12 h and judged by TLC. The reaction mixture was cooled to room temperature, The solvent was removed under the reduced pressure and the residue was purified through column chromatography on silica gel.

General Procedure for Palladium(II)-Catalyzed C-C bond formation of arylhydrazines with olefins:

A 5 mL round bottomed flask equipped with a magnetic stirring bar was charged with arylhydrazine (0.30 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol} \%, 0.009 \mathrm{mmol}$), 2,9-dimethyl-4,7-diphenyl $-1,10$-phenanthroline ($3.6 \mathrm{~mol} \%, 0.0108 \mathrm{mmol}$), and 4 equiv of HOAc (1.2 mmol) a in $\mathrm{Ph} /$ $\mathrm{MeOH}=4: 1(0.4 \mathrm{~mL}: 0.1 \mathrm{~mL})$. The flask was stirred at $40^{\circ} \mathrm{C}$ in air (1 atm) for $2-12 \mathrm{~h}$ and judged by TLC. The reaction mixture was cooled to room temperature, The solvent was removed under the reduced pressure and the residue was purified through column chromatography on silica gel.

Procedure for synthesis of (2,9-dimethyl-1,10-phenanthroline)-

4-cyanophenyl-palladium(II) chloride (1h'):

1h

A solution of preformed $\mathrm{Pd}(\mathrm{OAc})_{2}(67.3 \mathrm{mg}, 0.3 \mathrm{mmol}), 2,9$-dimethyl-1,10 -phenanthroline ($75 \mathrm{mg}, 0.36 \mathrm{mmol}$) in 2 mL of chloroform-d was treated with the 4-hydrazinylbenzonitrile ($40 \mathrm{mg}, 0.30 \mathrm{mmol}$) and the resulting mixture was stirred at room temperature for 12 h in glove-box. The solvent is removed under reduced pressure to a volume of approx. 0.2 mL and the crude product is precipitated by addition of 4 mL of absolute diethylether. The crude product is washed with further diethyl ether and the dried under reduced pressure. It is taken up in 3 mL of dichloromethane and filtered through a pad of Celite. The remaining solution is evaporated to dryness under reduced pressure to leave the product as a white solid.

Procedure for Palladium(II)-Catalyzed C-C bond formation of

\mathbf{N}^{\prime}-phenyl- acetohydrazide with tert-butyl acrylate:

A 5 mL round bottomed flask equipped with a magnetic stirring bar was charged with N^{\prime}-phenyl-acetohydrazide $\quad(0.30 \mathrm{mmol}), \quad \mathrm{Pd}(\mathrm{OAc})_{2} \quad(5 \mathrm{~mol} \%, \quad 0.015 \mathrm{mmol})$, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ($6 \mathrm{~mol} \%, 0.018 \mathrm{mmol}$), tert-butyl acrylate $(0.60 \mathrm{mmol})$ and 4 equiv of $\mathrm{HOAc}(1.2 \mathrm{mmol})$ in $\mathrm{PhCl} / \mathrm{MeOH}=4: 1(0.4 \mathrm{~mL}: 0.1 \mathrm{~mL})$. The
flask was stirred at $40^{\circ} \mathrm{C}$ in air (1 atm) for 12 h and judged by TLC. The reaction mixture was cooled to room temperature, The solvent was removed under the reduced pressure and the residue was purified through column chromatography on silica gel.

Characterization Data for the product

(E)-tert-butyl 3-(2-((E)-3-tert-butoxy-3-oxoprop-1-enyl)phenylamino)acrylate: This
 compound was prepared by the general procedure described above and was obtained as a yellow oil in 28% yield: $\mathrm{R}_{\mathrm{f}}=0.65$ (hexane : ethyl acetate $=7: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $10.70(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}, \mathrm{NH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}, \mathrm{ArH}), 7.32-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.10$ $(\mathrm{m}, 3 \mathrm{H}), 6.06(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH}), 1.58\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.50\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 168.4,167.9,146.5,141.8,139.7,129.8,124.0,116.5,112.4$, 99.8, 81.4, 79.4, 28.4, 28.3 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{H}^{+} 346.2018$, found 346.2022.
tert-butyl cinnamate (3a): This compound was prepared by the general procedure described

above and was obtained as a yellow oil in 91% yield: $\mathrm{R}_{\mathrm{f}}=0.72$
(hexane : ethyl acetate $=7: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59$ $(\mathrm{d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.36-7.38(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{ArH}), 6.37(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;$
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 166.3,143.5,134.7,130.0,128.8,128.0,120.2,80.5,28.2$ ppm; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}^{+}$227.1048, found 227.1042.
(E)-tert-butyl 3-(4-methoxyphenyl)acrylate (3b): This compound was prepared by the

3b
general procedure described above and was obtained as a yellow solid in 90% yield: $\mathrm{R}_{\mathrm{f}}=0.70$ (hexane : ethyl acetate $=$ 7:1); $\mathrm{Mp}=39.5-40.8{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54$ $(\mathrm{d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.45(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 6.24$ $(\mathrm{d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 166.7,161.1,143.2,129.6,127.4,117.7,114.3,80.2,55.3,28.2 \mathrm{ppm} ;$ HRMS (ESI, m / z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}^{+} 257.1154$, found 257..1158.
(\boldsymbol{E})-tert-butyl 3-p-tolylacrylate (3c): This compound was prepared by the general procedure
described above and was obtained as a yellow oil in 92% yield: $\mathrm{R}_{\mathrm{f}}=0.74$ (hexane : ethyl
 acetate $=7: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.0 \mathrm{~Hz}, \mathrm{CH}), 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=7.6$ $\mathrm{Hz}, \mathrm{ArH}), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.54$ (s, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 166.5,143.6,140.3,132.0,129.6,128.0$, 119.1, 80.3, 28.2, 21.4 ppm ; HRMS (ESI, m / z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}^{+}$241.1204, found 241.1199.
(E)-tert-butyl 3-(4-fluorophenyl)acrylate (3d): This compound was prepared by the general
 procedure described above and was obtained as a yellow oil in 85% yield: $\mathrm{R}_{\mathrm{f}}=0.75$ (hexane : ethyl acetate $=7: 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.54(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.46-7.49$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 7.02-7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.28(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right)$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.2,163.6(\mathrm{~d}, J=237.0 \mathrm{~Hz}), 142.2,130.9(\mathrm{~d}, J=3.3$ $\mathrm{Hz}), 129.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 120.0(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 80.6,28.2 \mathrm{ppm} ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{FNa}^{+}$245.0954, found 245.0950.
(E)-tert-butyl 3-(4-chlorophenyl)acrylate (3e): This compound was prepared by the general
 procedure described above and was obtained as a white solid in $16.0 \mathrm{~Hz}, \mathrm{CH}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=$ 16.0 Hz, CH), $1.52\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,142.1,135.8$, 133.2, 129.1, 120.8, 80.7, 28.2 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{H}^{+}$239.0839, found 239.0832.
(E)-tert-butyl 3-(4-bromophenyl)acrylate (3f): This is compound was prepared by the

general procedure described above and was obtained as a white solid in 81% yield: $\mathrm{R}_{\mathrm{f}}=0.74$ (hexane : ethyl acetate $=7: 1$); Mp $=64.8-65.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50(\mathrm{~d}, 1 \mathrm{H}, J$ $=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.49(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.0 \mathrm{~Hz}, \mathrm{CH}), 1.52(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH} 3) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 166.0,142.1,133.6$,
132.1, 129.3, 124.1, 120.9, 80.7, 28.2 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Na}^{+}$ 305.0153, found 305.0148.
(\boldsymbol{E})-tert-butyl 3-(4-iodophenyl)acrylate (3g): This is compound was prepared by the
 general procedure described above and was obtained as a yellow solid in 80% yield: $\mathrm{R}_{\mathrm{f}}=0.74$ (hexane : ethyl acetate $=7: 1$); Mp $=66.2-67.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.0 Hz, ArH), $7.48(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.36(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.0 \mathrm{~Hz}, \mathrm{CH}), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.0,142.3,138.0$, 134.2, 129.4, 121.0, 96.1, 80.7, $28.2 \mathrm{ppm} ; \operatorname{HRMS}\left(\mathrm{ESI}, \mathrm{m} / \mathrm{z}\right.$): calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{INa}^{+}$ 353.0015 , found 353.0020 .
(E)-tert-butyl 3-(4-cyanophenyl)acrylate (3h): This is compound was prepared by the
 general procedure described above and was obtained as a white solid in 93% yield: $\mathrm{R}_{\mathrm{f}}=0.62$ (hexane : ethyl acetate $=$ 7:1); $\mathrm{Mp}=154.8-155.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.65(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.58(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH})$, $6.44(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 1.53\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.4$, 141.1, 139.0, 132.6, 128.3, 123.8, 118.4, 113.1, 81.2, $28.1 \mathrm{ppm} ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}^{+} 252.1000$, found 252.0995.
(E)-4-(3-tert-butoxy-3-oxoprop-1-enyl)benzoic acid (3i): This is compound was prepared
 by the general procedure described above and was obtained as a white solid in 98% yield: $R_{f}=0.35$ (dichloromethane : ethyl acetate $=3: 1$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 10.96(\mathrm{~b}, 1 \mathrm{H}, \mathrm{COOH}), 8.11(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH})$, $7.59(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.5,165.8,142.0,139.8,130.7,130.3,127.9,123.0,81.1,28.2$ ppm; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}^{+}$271.0946, found 271.0941
(E)-tert-buty(E)-tert-butyl 3-(4-(trifluoromethyl)phenyl)acrylate (3j): This is compound was prepared by the general procedure described above and was obtained as a yellow oil in 85% yield: $\mathrm{R}_{\mathrm{f}}=0.71$ (hexane : ethyl acetate $\left.=7: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57-7.63$
$(\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}), 7.59(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 6.43(\mathrm{~d}, 1 \mathrm{H}, J=$

3j $16.0 \mathrm{~Hz}, \mathrm{CH}), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 165.7,141.6,138.1,131.5(\mathrm{q}, J=32.0 \mathrm{~Hz}), 128.0$, $125.8(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.9(\mathrm{q}, J=270.0 \mathrm{~Hz}), 122.8,81.0$, 28.1 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{Na}^{+}$295.0922, found 295.0927.
(E)-tert-butyl 3-(4-sulfamoylphenyl)acrylate (3k): This is compound was prepared by the
 general procedure described above and was obtained as a white solid in 85% yield: $\mathrm{R}_{\mathrm{f}}=0.46$ (dichloromethane : methanol $=7: 1$) ; $\mathrm{Mp}=91.8-92.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 7.71-7.88(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.41\left(\mathrm{~b}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.63$ $(\mathrm{d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 165.7$, 145.5, 142.3, 137.8, 129.1, 126.6, 122.9, 80.8, $28.3 \mathrm{ppm} ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{SNa}^{+}$306.0776, found 306.0782.
(E)-tert-butyl 3-m-tolylacrylate (31): This compound was prepared by the general procedure
 described above and was obtained as a yellow oil in 93% yield: $\mathrm{R}_{\mathrm{f}}=0.74$ (hexane : ethyl acetate $=7: 1$) ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.29-7.31(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.23-7.27 (m, 1H, ArH), $7.16(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{ArH}), 6.35(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH})$, $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,143.7$, 138.4, 134.6, 130.8, 128.7, 128.6, 125.2, 120.0, 80.4, 28.2, $21.3 \mathrm{ppm} ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}^{+}$241.1204, found 241.1202.
(E)-tert-butyl 3-(3-bromophenyl)acrylate (3m): This compound was prepared by the

3m general procedure described above and was obtained as a yellow oil in 93% yield: $\mathrm{R}_{\mathrm{f}}=0.72$ (hexane : ethyl acetate $=$ 7:1); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.49(\mathrm{~d}$, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.47-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.21-7.25(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}), 6.36(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 1.53\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 165.8,141.8,136.8,132.7,130.6,130.3,126.6,123.0,121.7,80.8,28.2 \mathrm{ppm} ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{BrNa}^{+}$305.0153, found 305.0155.
(E)-3-(3-tert-butoxy-3-oxoprop-1-enyl)benzoic acid (3n): This compound was prepared by

3n the general procedure described above and was obtained as a white solid in 94% yield: $\mathrm{R}_{\mathrm{f}}=0.38$ (dichloromethane : ethyl acetate $=3: 1$) $\mathrm{Mp}=159.5-160.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.8(\mathrm{~b}, 1 \mathrm{H}, \mathrm{COOH}), 8.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.10(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.73$ $(\mathrm{d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.49(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 6.47(\mathrm{~d}$, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.5,166.0$, $142.2,135.2,132.9,131.4,130.1,129.5,129.1,121.7,80.9,28.2 \mathrm{ppm} ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}^{+}$271.0946, found 271.0937.
(\boldsymbol{E})-tert-butyl 3-o-tolylacrylate (3o): This compound was prepared by the general procedure

30 described above and was obtained as a yellow oil in 73% yield: $\mathrm{R}_{\mathrm{f}}=$ 0.71 (hexane : ethyl acetate $=7: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.89(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.54(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH})$, 7.23-7.25 (m, 1H, ArH), 7.17-7.20 (m, 2H, ArH), $6.29(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{CH}), 2.43(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.54\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5,141.3,137.5,133.6$, 130.7, 129.7, 126.4, 126.3, 121.1, 80.5, 28.2, 19.8 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}^{+}$241.1204, found 241.1201.
(E)-tert-butyl 3-(2-nitrophenyl)acrylate (3p): This compound was prepared by the general

3p procedure described above and was obtained as a yellow oil in 75% yield: $\mathrm{R}_{\mathrm{f}}=0.65$ (hexane : ethyl acetate $\left.=7: 1\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.99-8.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.62-7.63 (m, 2H, ArH), 7.49-7.53 (m, 1H, ArH), $6.29(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{CH}), 1.53(\mathrm{~s}, 9 \mathrm{H}$, $\left.3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 165.1,148.4,138.7,133.4,130.8,130.0,129.1$, 125.3, 124.9, 81.2, 28.1 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}^{+} 272.0899$, found 272.0896.
(E)-tert-butyl 3-(3,4-dimethoxyphenyl)acrylate (3q): This compound was prepared by the

3q general procedure described above and was obtained as a yellow oil in 88% yield: $\mathrm{R}_{\mathrm{f}}=0.61$ (hexane : ethyl acetate $=$ $7: 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0$
$\mathrm{Hz}, \mathrm{CH}), 7.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{ArH}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH})$, $6.31(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{CH}), 2.26\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.6,143.7,139.0,137.0,132.4,130.1,129.2,125.6,118.9,80.3,28.2$, 19.8, 19.7 ppm; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}^{+}$287.1259, found 278.1261.
(E)-tert-butyl 3-(3-chloro-4-fluorophenyl)acrylate (3r): This compound was prepared by

3r the general procedure described above and was obtained as a yellow oil in 82% yield: $\mathrm{R}_{\mathrm{f}}=0.68$ (hexane : ethyl acetate $=7: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{dd}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, J=$ 6.9 Hz, ArH), $7.46(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.34-7.37(\mathrm{~m}, 1 \mathrm{H}$, ArH), $7.13(\mathrm{t}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.29(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 165.7,158.9(\mathrm{~d}, J=252.9 \mathrm{~Hz}), 140.9,132.1(\mathrm{~d}, J=4.2 \mathrm{~Hz})$, $129.9,127.8(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 121.7(\mathrm{~d}, J=18.3 \mathrm{~Hz}), 121.4(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 117.0(\mathrm{~d}, J=21.6$ $\mathrm{Hz})$, 80.9, 28.2 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{ClFNa}^{+}$279.0564, found 279.0566.
(E)-tert-butyl 3-(3,5-dichlorophenyl)acrylate (3s): This compound was prepared by the
 general procedure described above and was obtained as a white solid in 85% yield: $\mathrm{R}_{\mathrm{f}}=0.67$ (hexane : ethyl acetate $=7: 1$); Mp $=53.6-54.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~d}, 1 \mathrm{H}, J=$ 16.0 Hz, CH), 7.347 (s, 1H, ArH), 7.349 (s, 1H, ArH), 7.32 (s, $1 \mathrm{H}, \mathrm{ArH}), 6.35(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 165.4,140.4,137.7,135.5,129.5,126.1,123.1,81.1,28.1 \mathrm{ppm} ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Na}^{+}$295.0269, found 295.0272.
(\boldsymbol{E})-tert-butyl 3-(2,5-difluorophenyl)acrylate (3t): This compound was prepared by the
 general procedure described above and was obtained as a solid in 73% yield: $\mathrm{R}_{\mathrm{f}}=0.66$ (hexane : ethyl acetate $=7: 1$); $\mathrm{Mp}=50.1-51.0^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH})$, 7.17-7.21 (m, 1H, ArH), 7.01-7.06 (m, 2H, ArH), $6.42(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.0 \mathrm{~Hz}, \mathrm{CH}), 1.53\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 165.6,158.7(\mathrm{~d}, J=$ $242.8 \mathrm{~Hz}), 157.2(\mathrm{~d}, J=249.4 \mathrm{~Hz}), 134.8(\mathrm{t}, J=2.3 \mathrm{~Hz}), 124.0,123.9(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 117.8$
$(\mathrm{dd}, J=8.9 \mathrm{~Hz}, J=24.4 \mathrm{~Hz}), \quad 117.3(\mathrm{dd}, J=8.6 \mathrm{~Hz}, J=25.2 \mathrm{~Hz}), 114.5(\mathrm{dd}, J=3.5 \mathrm{~Hz}, J=$ 24.5 Hz), 81.0, 28.1 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}$263.0860, found 263.0870.
(E)-4-(3-butoxy-3-oxoprop-1-enyl)benzoic acid (3u): This is compound was prepared by the general procedure described above and was obtained
ethyl acetate $=3: 1$); $\mathrm{Mp}=88.6-89.3{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.67(\mathrm{~d}, 1 \mathrm{H}$, $J=15.9 \mathrm{~Hz}, \mathrm{CH}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 4.13\left(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.58-1.61$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 166.8,166.0,143.1,138.1,132.1,129.7,128.4,120.4,63.9,30.3,18.7$, $13.6 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}^{+} 271.0946$, found 271.0940
(E)-4-(3-ethoxy-3-oxoprop-1-enyl)benzoic acid (3v): This is compound was prepared by the general procedure described above and was obtained as a
acetate $=3: 1$); $\mathrm{Mp}=109.5-110.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$): $\delta 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.0 \mathrm{~Hz}, \mathrm{CH}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 4.18\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.25(\mathrm{t}, 3 \mathrm{H}, J=$ 7.1 Hz, CH_{3}) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$): δ 166.8, 165.9, 143.1, 138.1, 132.1, 129.7, 128.4, 120.5, 60.2, 14.2 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na}^{+}$243.0633, found 243.0636
(E)-4-(3-methoxy-3-oxoprop-1-enyl)benzoic acid (3w): This is compound was prepared by the general procedure described above and was obtained as
ethyl acetate $=3: 1$); $\mathrm{Mp}=149.6-150.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $)_{6}: \delta 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.68(\mathrm{~d}, 1 \mathrm{H}$, $J=15.8 \mathrm{~Hz}, \mathrm{CH}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$): $\delta 166.8,166.4,143.2,138.1,132.1,129.7,128.4,120.1,51.6$ ppm; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Na}^{+}$229.0477, found 229.0477
(\boldsymbol{E})-butyl 3-p-tolylacrylate (3x): This is compound was prepared by the general procedure
 described above and was obtained as a yellow oil in 89% yield: R_{f}
$=0.69$ (hexane : ethyl acetate $=7: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.66(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{CH}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$, $7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 4.20\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.67-1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.97(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}$, CH_{3}) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,144.6,140.6,131.8,129.6,128.1,117.2$, 64.3, 30.8, 21.4, 19.2, 13.8 ppm; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}^{+}$241.1204, found 241.1202
(\boldsymbol{E})-ethyl 3-p-tolylacrylate (3y): This is compound was prepared by the general procedure
 $7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.39(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 4.26\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 2.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.2$, 144.6, 140.6, 131.8, 129.6, 128.1, 117.2, 60.4, 21.5, 14.4 ppm; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}^{+}$213.0891, found 213.0894
(\boldsymbol{E})-methyl 3-p-tolylacrylate (3z): This is compound was prepared by the general procedure described above and was obtained as a yellow solid in 84% yield:
$\mathrm{R}_{\mathrm{f}}=0.63$ (hexane : ethyl acetate $=7: 1$); $\mathrm{Mp}=53.2-54.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ (d, 2H, $J=8.0 \mathrm{~Hz}, \mathrm{ArH}$), 7.19 (d, 2H, $J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 6.39(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 3.80(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,144.9,140.7$, 131.7, 129.6, 128.1, 116.7, 51.6, 21.5 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}^{+}$ 199.0735, found 199.0732
(\boldsymbol{E})-ethyl 3-phenylbut-2-enoate (4): This is compound was prepared by the general
 procedure described above and was obtained as a yellow oil in 72% yield: $\mathrm{R}_{\mathrm{f}}=0.70$ (hexane : ethyl acetate $=7: 1$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.47-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.36-7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.14(\mathrm{~s}$,
$1 \mathrm{H}, \mathrm{CH}), 4.22\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ ppm; ${ }^{13}{ }^{\mathrm{C}}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,155.5,142.3,129.0,128.5,126.3,117.2,59.8$, 17.9, 14.4 ppm; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}^{+} 213.0888$, found 213.0891
(\boldsymbol{E})-ethyl 3-(4-cyanophenyl)-5-phenylpent-2-enoate (5): This is compound was prepared by the general procedure described above and was obtained as a solid in 45% yield: $\mathrm{R}_{\mathrm{f}}=0.65$
 (hexane : ethyl acetate $=7: 1$); $\mathrm{Mp}=51.3-52.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.49(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.3 \mathrm{~Hz}, \mathrm{ArH}$), 7.23-7.27 (m, 2H, ArH), 7.16-7.18 (m, 3H, ArH), $6.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.22\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.37-3.41(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70-2.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major): δ 165.7, 157.1, 145.9, 140.8, 132.4, 128.4, 128.4, 127.5, 126.2, 120.3, 118.5, 112.5, 60.3, 35.0, 32.9, 14.3 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}^{+} 356.1626$, found 356.1624
\mathbf{N}-phenylcinnamamide (6): This is compound was prepared by the general procedure
 described above and was obtained as a white solid in 78% yield: R_{f} $=0.35$ (hexane : ethyl acetate $=3: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35$ (b, 1H, NH), 7.72 (d, 1H, J = $15.9 \mathrm{~Hz}, \mathrm{CH}), 7.66-7.68$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.38-7.40 (m, 2H, ArH), 7.24-7.30 (m, 5H, ArH), 7.07-7.11 (m, 1H, ArH), 6.67 (d, $1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{CH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.6,142.3,138.2,134.6,130.0$, 129.1, $128.8,128.0,124.5,121.2,120.4 \mathrm{ppm}$; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NONa}^{+}$ 246.0895 , found 246.0901
cinnamic acid (7): This is compound was prepared by the general procedure described above
 and was obtained as a white solid in 73% yield: $\mathrm{R}_{\mathrm{f}}=0.38$ (dichloromethane : ethyl acetate $=2: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.81$ (d, 1H, $J=15.9 \mathrm{~Hz}, \mathrm{CH}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.18$ (d, 2H, $J=8.0 \mathrm{~Hz}, \operatorname{ArH}), 6.39(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 4.26\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.37$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.2$, 144.6, 140.6, 131.8, 129.6, 128.1, 117.2, 60.4, 21.5, 14.4 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Na}^{+} 171.0422$, found 171.0424
(E)-1,2-diphenylethene (8): This is compound was prepared by the general procedure
 described above and was obtained as a white solid in 93% yield: $\mathrm{R}_{\mathrm{f}}=$ 0.78 (hexane : ethyl acetate $=7: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.55-7.57 (m, 4H, ArH), 7.39-7.42 (m, 4H, ArH), 7.29-7.32 (m, 2H, ArH), $7.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.4$, 128.8, 128.7, 127.7, $126.6 \mathrm{ppm} ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{H}^{+}$181.1017, found 181.1015

4-(cyclopent-2-enyl)benzonitrile (9) and 4-cyclopentenylbenzonitrile (10): This is
 compound was prepared by the general procedure described above and was obtained as a yellow oil in 80% yield: $\mathrm{R}_{\mathrm{f}}=0.58$ (hexane : ethyl acetate $=7: 1)(\mathbf{9}: 10=80: 20) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{9}): \delta 7.57$
 $(\mathrm{d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.00-6.01(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 5.72-5.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.93-3.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.41-2.51(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63-1.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 152.2,133.4,132.8,132.3,128.0,119.2,109.8,51.4,33.6,32.5 \mathrm{ppm} ; \operatorname{HRMS}(E S I, \mathrm{~m} / \mathrm{z}):$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NH}^{+}$170.0970, found 170.0972; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) (10): $\delta 7.57(\mathrm{~d}$, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 3.48-3.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.83-2.89(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.71-2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.41-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 153.3,132.1,130.7,129.7,127.7,126.0,109.6,43.0,41.2,32.9 \mathrm{ppm} ;$ HRMS (ESI, m / z): calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NH}^{+} 170.0970$, found 170.0972
(\boldsymbol{E})-4-p-tolylbut-3-enenitrile (11): This is compound was prepared by the general procedure R $=0.58$ (hexane : ethyl acetate $=7: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.25(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.14(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{CH})$, $5.99(\mathrm{td}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, J=15.7 \mathrm{~Hz}, \mathrm{CH}), 3.26\left(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 138.3,134.5,132.9,129.4,126.4,117.5,115.7,21.2$, 20.8 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NH}^{+} 158.0970$, found 158.0969

3-p-tolylbut-3-enenitrile (12): This is compound was prepared by the general procedure
 described above and was obtained as a yellow oil in 14% yield: $\mathrm{R}_{\mathrm{f}}=$ 12
0.63 (hexane : ethyl acetate $=7: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}$, $\mathrm{ArH}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 5.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 138.6, 136.8, 135.0, 129.4, 125.4, 117.5, 115.2, 23.9, 21.1 ppm ; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NH}^{+}$158.0970, found 158.0969.
(2,9-dimethyl-1,10-phenanthroline)- 4-cyanophenyl-palladium(II) chloride ($1 \mathrm{~h}^{\prime}$): This is compound was prepared by the general procedure described above and was obtained as a
 yellow oil in 35% yield: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{~d}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{~b}, 2 \mathrm{H}, \mathrm{ArH}), 7.26-7.29(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 3.27\left(\mathrm{~b}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08(\mathrm{~b}$, $3 \mathrm{H}, \mathrm{CH}_{3}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.2,153.6,137.8$, $136.8,128.8,127.6,126.7,125.3,120.1,106.7,28.5,26.7 \mathrm{ppm} ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{PdH}^{+}$452.0146, found 452.0141 .

Mechanistic study by employing ESI-MS:

Figure 1 shows the ESI-MS spectrum of the reaction mixture of cross-coupling between 4-methoxy phenylhydrazine and tert-butyl acrylate. The reaction mixture was injected directly to ESI-MS after reaction time of 2 hours. Aryl palladium ion 14 (m/z 573) and 18 (m/z 932) and four palladiaziridine complexes $\mathbf{1 3}(\mathrm{m} / \mathrm{z} 497), \mathbf{1 5}(\mathrm{m} / \mathrm{z} 603), \mathbf{1 6}(\mathrm{m} / \mathrm{z} 709)$ and 17 ($\mathrm{m} / \mathrm{z} 731$) could be detected as stable species (Figure 1).

Figure 1. ESI(+)-MS spectrum of the reaction mixture of cross-coupling between 4-methoxy phenylhydrazine and tert-butyl acrylate.

ZMK-110610-2-2H_110610141812 \#2-6 RT: 0.03-0.13 AV: 5 SB: 77 0.17-1.98 NL: 3.93E9 T: + c ESI Full ms [50.00-2000.00]

ZMK-110522-2-NO \#2-7 RT: 0.03-0.15 AV: 6 SB: 74 0.20-1.94 NL: 4.84E9 T: + c ESI Full ms [50.00-2000.00]

ZMK-110522-1-ACID\#1-8 RT: 0.00-0.18 AV: 8 SB: 73 0.27-2.00 NL:3.98E9 $\mathrm{T}:+\mathrm{c}$ ESI Full ms [50.00-2000.00]

zmk-110510-12-CN \#1-5 RT: 0.00-0.10 AV: 5 SB: 76 0.20-1.99 NL: 8.89E9
T: + c ESI Full ms [50.00-2000.00]

zmk-110609-2-2h_110609145346 \#1-7 RT: 0.01-0.16 AV: 7 SB: 74 0.23-1.96 NL: 7.63E9 T: + c ESI Full ms [50.00-2000.00]

zmk-110609-5-1h_110609162009 \#1-8 RT: 0.01-0.18 AV: 8 SB: 72 0.26-1.95 NL: 6.54E9 $\mathrm{T}:+\mathrm{c}$ ESI Full ms [50.00-2000.00]

zmk-110609-6-2h_110609173708 \#1-6 RT: 0.01-0.14 AV: 6 SB: 75 0.19-1.95 NL: 3.61E9 T: + c ESI Full ms [50.00-2000.00]

zmk-110609-7-4h_110609195920 \#2-7 RT: 0.03-0.16 AV: 6 SB: 77 0.18-1.99 NL: 9.50E9 T: + c ESI Full ms [50.00-2000.00]

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50

zmk-20110331-1-PMP-C13 av 400-H

$$
\text { zmk } 1104102 \mathrm{Mc} \mathrm{C} 13 \mathrm{AV} \text {, A00, Apr } 2011
$$

zmk-110409-2-4-Cl-C13 1H NMR CDC13 20110407

\%	$\bigcirc{ }^{\circ} \mathrm{\omega}$ न\%
$\stackrel{\square}{\bullet}$	¢ ¢ ¢ ¢ joj
\|	\| 1]

zmk-110504-2-4-Br-cootbu-C13, 400 MHz H

$-2 \varepsilon .17$

 $\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

zmk-110429-4-I-tBu-C13, AV400, Apr 2011

zmk-110430-4-CN-CUUtBu-zhongzuo-H , AV4C0, Apr 2011

3h

zmk-110409-1-1-CN-C13 1H NMR CDCl3 201104 Cl

zmk-110430-3-SU2NH21-tBu-H , AV400, Apr 2 C 11

znk-110130-3-SO2NH21-tBu-C13 , AV400, $\mathrm{Ap}_{\mathrm{p}} 2011$

~

zmk 11050433 Br cootbu C13, 40 CMHzH

zmk-110429-3-COOH-tBu-H , AV400, Apr 2011

3n

zmk-110503-1-COOH-nBu-2-H , 400 MHz H

zmk-110503-1-COOH-nBu-2-C13, 400 MHz H

zmk-110421-4-Me+COOnBu-A , AV400, Apr 2011

$2 \mathrm{mk}-110421-4-\mathrm{Me}+\mathrm{COOnBu}-\mathrm{Cl} 3$, AV4CU, Apr 2011

zmk-110123-1-Me+CODnEt--1-A, AVACO, Apr 2011

zmk-110423-4-Ne+CCOnLt--1-C13, AV40D, Apr 2011

zmk-110430-PhMe-Et-C13 , AV400, Apr 2011

zmk-110424-4-UN+Y'hcuost-じ13, Av400, Apr 2011

zmis-110505-1-4-Me-=cCN-shang $-\mathrm{C} 13,400 \mathrm{MHz} \mathrm{H}$

$\left.\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) \mathrm{ppm}$

[^0]: ${ }^{\text {a }}$ Unless noted otherwise, the reactions were carried out on a 0.30 mmol scale of ta with 4 equiv of HOAD (1.2 mmol), and 2.0 equiv $\mathbf{2 a}(0.6 \mathrm{mmol})$ in solvent (0.5 mL). ${ }^{b}$ Isolated yield. ${ }^{c} 50 \mathrm{mg} 4 \mathrm{~A}^{\circ} \mathrm{MS}$ was added. ${ }^{d}$ with $3 \% \mathrm{Pd}(\mathrm{OAc})_{2} .{ }^{e}$ reaction was done in $\mathrm{PhCl}: \mathrm{MeOH}=4: 1(0.4 \mathrm{~mL}: 0.1 \mathrm{~mL})$.

